| A. | 3个 | B. | 4个 | C. | 5个 | D. | 6个 |
分析 写出展开式的通项,利用前三项系数成等差数列,求出n,进而可求展开式中x的指数是整数的项的个数.
解答 解:展开式的通项为Tr+1=${C}_{n}^{r}$×($\frac{1}{2}$)r×x${\;}^{\frac{2n-3r}{3}}$(r=0,1,2,…,n),
∴前三项的系数分别是1,$\frac{1}{2}$n,$\frac{1}{8}$n(n-1),
∵前三项系数成等差数列
∴2•$\frac{1}{2}$n=1+$\frac{1}{8}$n(n-1)
∴n=8,
∴当n=8时,Tr+1=${C}_{n}^{r}$×($\frac{1}{2}$)r×x${\;}^{\frac{2n-3r}{3}}$(r=0,1,2,…,n),
∴r=0,4,8,展开式中x的指数是整数
故选:A.
点评 本题考查二项展开式,考查等差数列的运用,考查展开式的特殊项,确定n是关键.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)的图象关于直线$x=\frac{π}{2}$对称 | B. | g(x)的图象关于点(π,0)对称 | ||
| C. | g(x)在$[0,\frac{π}{2}]$上递增 | D. | g(x)在[0,π]上递减 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$|{\overrightarrow a}|=|{\overrightarrow b}|$,则$\overrightarrow a=\overrightarrow b$ | B. | 若$|{\overrightarrow a}|>|{\overrightarrow b}|$,则$\overrightarrow a>\overrightarrow b$ | C. | 若$\overrightarrow a=\overrightarrow b$,则$\overrightarrow a∥\overrightarrow b$ | D. | 若$|{\overrightarrow a}|=0$,则$\overrightarrow a=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{36}$ | B. | $\frac{4}{21}$ | C. | $\frac{2}{9}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com