精英家教网 > 高中数学 > 题目详情

【题目】函数 的定义域是(
A.[﹣2,2]
B.(﹣∞,﹣2]∪[2,+∞)
C.(﹣2,2)
D.(﹣∞,﹣2)∪(2,+∞)

【答案】D
【解析】解:函数

∴|x|﹣2>0,

即|x|>2,

解得x<﹣2或x>2,

∴函数y的定义域是(﹣∞,﹣2)∪(2,+∞).

故选:D.

【考点精析】利用函数的定义域及其求法对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,直线l:x﹣ty﹣2=0.
(1)若直线l与曲线y=f(x)有且仅有一个公共点,求公共点横坐标的值;
(2)若0<m<n,m+n≤2,求证:f(m)>f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.
(1)求圆C的直角坐标方程;
(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某班甲、乙两位同学在5次阶段性检测中的数学成绩(百分制)的茎叶图,甲、乙两位同学得分的中位数分别为x1 , x2 , 得分的方差分别为y1 , y2 , 则下列结论正确的是(
A.x1<x2 , y1<y2
B.x1<x2 , y1>y2
C.x1>x2 , y1>y2
D.x1>x2 , y1<y2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a1=1,且a1 , a2 , a4+2成等比数列.
(1)求数列{an}的通项公式及其前n项和Sn
(2)设 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,DA⊥平面PABDCABDADC=2,ABAP=4,∠PAB=120°,MPB中点.

(Ⅰ)求证:CM∥平面PAD

(Ⅱ)求二面角MACB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则关于x的方程[f(x)]2﹣f(x)+a=0(a∈R)的实数解的个数不可能是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x﹣sin2x+ ,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边a= ,角B所对边b=5,若f(A)=0,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C的对边分别为a,b,c,且 + =
(1)求b的值;
(2)若cosB+ sinB=2,求a+c的取值范围.

查看答案和解析>>

同步练习册答案