精英家教网 > 高中数学 > 题目详情

已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

(1)y=(2±)x或x+y+1=0或x+y-3=0;(2).

解析试题分析:(1)圆的方程化为标准方程,求出圆心与半径,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;
(2)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.
试题解析:(1)将圆C配方得:(x+1)2+(y-2)2=2.
①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得:y=(2±)x.
②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0,由直线与圆相切得:x+y+1=0或x+y-3=0.故切线方程为y=(2±)x或x+y+1=0或x+y-3=0.
(2)由|PO|=|PM|,得:
=(x1+1)2+(y1-2)2-2⇒2x1-4y1+3=0.即点P在直线l:2x-4y+3=0上,当|PM|取最小值时即|OP|取得最小值,直线OP⊥l.
∴直线OP的方程为:2x+y=0.解方程组得P点坐标为.
考点:直线和圆的方程的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆上的点到椭圆右焦点的最大距离为,离心率,直线过点与椭圆交于两点.
(1)求椭圆的方程;
(2)上是否存在点,使得当转到某一位置时,有成立?若存在,求出所有点的坐标与的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求经过点A(3,2),B(-2,0)的直线方程。
(2)求过点P(-1,3),并且在两轴上的截距相等的直线方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线y=2x是△ABC中∠C的平分线所在的直线,且A、B的坐标分别为A(-4,2)、B(3,1),求顶点C的坐标并判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求经过点A(-2,2)且在第二象限与两个坐标轴围成的三角形面积最小时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点M(0,1)作一条直线,使它被两条直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M点平分.求此直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线经过直线与直线的交点,且垂直于直线.
(1)求直线的方程;
(2)求直线关于原点对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题


“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的_________________条件 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2
(1)当直线l与y轴重合时,若S1=λS2,求λ的值;
(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.

查看答案和解析>>

同步练习册答案