精英家教网 > 高中数学 > 题目详情

【题目】函数 是定义域为 的偶函数,当 时, 若关于 的方程 有且仅有8个不同实数根,则实数 的取
值范围是

【答案】
【解析】当0≤x≤2时,y=- 递减,当x>2时,y= 递增,
由于函数y=f(x)是定义域为R的偶函数,
则f(x)在(-∞,-2)和(0,2)上递减,在(-2,0)和(2,+∞)上递增,
当x=0时,函数取得极大值0;当x=±2时,取得极小值-1.
当0≤x≤2时,y=- ∈[-1,0].
当x>2时,y= ∈[-1,-
要使关于x的方程 ,有且仅有8个不同实数根,
设t=f(x),则t2+at+ =0的两根均在(-1,-

故答案为
本题主要考查函数的单调性、奇偶性的应用以及函数的零点问题。根据题意先分析函数的单调性和值域,要使函数有8个不同实数根,转化为方程的两个根在(-1,- 3/ 4 )上,由二次方程根的分布即可列出不等式组进行求解即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,底面 为直角梯形, ,且 平面 .

(1)求 与平面 所成角的正弦值;
(2)棱 上是否存在一点 满足 ?若存在,求 的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 ,倾斜角为 .以 为极点, 轴非负半轴为极轴,建立极坐标系,曲线 的极坐标方程为
(Ⅰ)求直线 的参数方程和曲线 的直角坐标方程;
(Ⅱ)已知直线 与曲线 交于 两点,且 ,求直线 的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的 值为11,则判断框中的条件可以是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行如图的程序框图,输出S的值为4,则判断框中应填入的条件是( )

A.k<14?
B.k<15?
C.k<16?
D.k<17?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-ex(x∈R,且e为自然对数的底数).
(1)判断函数f(x)的单调性与奇偶性;
(2)是否存在实数t , 使不等式f(xt)+f(x2t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)若 的极值点,求 的值;
(Ⅱ)若 单调递增,求 的取值范围.
(Ⅲ)当 时,方程 有实数根,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)当时,分别求函数的最小值和的最大值,并证明当时, 成立;

(3)令,当时,判断函数有几个不同的零点并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程选讲.

在平面直角坐标系中,以为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为,曲线的参数方程为.

(1)写出直线与曲线的直角坐标方程;

(2)过点M平行于直线的直线与曲线交于两点,若,求点M轨迹的直角坐标方程.

查看答案和解析>>

同步练习册答案