精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x+1,对于任意正数a,|x1-x2|<a是|f(x1)-f(x2)|<a成立的


  1. A.
    充分非必要条件
  2. B.
    必要非充分条件
  3. C.
    充要条件
  4. D.
    既不充分也不必要条件
B
分析:由|x1-x2|<a不能推出|f(x1)-f(x2)|<a;而由|f(x1)-f(x2)|<a,能推出|x1-x2|<a,由简易逻辑的知识可得正确答案.
解答:由|x1-x2|<a,得|f(x1)-f(x2)|=|(2x1+1)-(2x2+1)|=2|x1-x2|<2a,
不能推出|f(x1)-f(x2)|<a;
而由|f(x1)-f(x2)|<a得,2|x1-x2|<a,即|x1-x2|,当然能推出|x1-x2|<a
故|x1-x2|<a是|f(x1)-f(x2)|<a成立的必要非充分条件,
故选B
点评:本题考查充要条件,关键是看|x1-x2|<a能否推出|f(x1)-f(x2)|<a;|f(x1)-f(x2)|<a能否推出|x1-x2|<a,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案