精英家教网 > 高中数学 > 题目详情
设定圆M:(x+
3
)2+y2
=16,动圆N过点F(
3
,0)
且与圆M相切,记动圆N圆心N的轨迹为C.
(1)求轨迹C的方程;
(2)已知A(-2,0),过定点B(1,0)的动直线l交轨迹C于P、Q两点,△APQ的外心为N.若直线l的斜率为k1,直线ON的斜率为k2,求证:k1•k2为定值.
考点:直线与圆锥曲线的综合问题,轨迹方程
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知条件得圆N内切于圆M,|NM|+|NF|=4>|FM|,由此能求出点N的轨迹C的方程.
(2)设直线PQ为x=my+1设点P(x1,y1),Q(x2,y2),由
x=my+1
x2+4y2=4
,得(m2+4)y2+2my-3=0,由此利用韦达定理综合已知条件能k1•k2为定值.
解答: (1)解:∵点F(
3
,0)
在圆M:(x+
3
)2+y2=16
内,
∴圆N内切于圆M,
∴|NM|+|NF|=4>|FM|
∴点N的轨迹C的方程为
x2
4
+y2=1
.…(5分)
(2)证明:∵△APQ存在,
∴直线PQ斜率不为0
设直线PQ为x=my+1设点P(x1,y1),Q(x2,y2),
x=my+1
x2+4y2=4
,得(m2+4)y2+2my-3=0,
y1+y2=
-2m
m2+4
y1y2=
-3
m2+4

直线AP的中垂线方程为:y=-
x1+2
y1
(x-
x1-2
2
)+
y1
2

y=-
x1+2
y1
x+
x
2
1
-4
2y1
+
y1
2

x
2
1
+4
y
2
1
=4
,∴y=-
x1+2
y1
x-
3y1
2

y=-
my1+3
y1
x-
3
2
y1
,∴y=-mx-
2
y1
x-
3y1
2

同理得到直线AQ的中垂线方程为:y=-mx-
2
y2
x-
3y2
2
,…(7分)
∴点N的坐标满足
y+mx=-
2
y1
x-
3y1
2
y+mx=-
2
y2
x-
3y2
2

2
y1
x+
3y1
2
=
2
y2
x+
3y2
2
2y+2mx=-(
2
y1
x+
2
y2
x)-(
3y1
2
+
3y2
2
)

x=
1
2
y1y2
2y+2mx=-(
1
y1
+
1
y2
)3x-
3
2
(y1+y2)

x=
-3
2(m2+4)
2y+2mx=-2mx+
3m
m2+4
…(9分)
∴2y+2mx=-2mx-2mx,
解得k2=
y
x
=-3m

又∵直线l的斜率为k1
k1=
1
m
(m≠0),∴k1k2=-3.…(13分)
点评:本题考查轨迹方程的求法,考查斜率乘积为定值的证明,考查分析运算能力,考查推理论证能力,考查函数方程思想,考查分类整合思想,对数学思维能力的要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆4x2+y2=1,O是坐标原点.
(Ⅰ)设椭圆在第一象限的部分曲线为C,动点P在C上,C在点P处的切线与x轴、y轴的交点分别为G、H,以OG、OH为邻边作平行四边形OGMH,求点M的轨迹方程;
(Ⅱ)若椭圆与x轴y轴正半轴交于A、B两点,直线y=kx(k>0)与椭圆交于R、S两点,求四边形ARBS面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A、B是椭圆
y2
a2
+
x2
b2
=1(a>b>0)的两个顶点,它的短轴长为1,其一个焦点与短轴的两个端点构成正三角形.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线y=kx(k>0)与椭圆相交于R、S两点.求四边形ARBS面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=(
1
4
x+(
1
2
x+1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点A,B分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右顶点,圆B:(x一2)2十y2=9经过椭圆E的左焦点F1
(Ⅰ)求椭圆E的方程;
(Ⅱ)过A作直线l与y轴交于点Q,与椭圆E交于点P(异于A).
(i)求
F1Q
BP
的取值范围;
(ii)是否存在定圆r,使得以P为圆心,PF1为半径的圆始终内切于圆r,若存在,求出圆r的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:
一次购物款(单位:元)[0,50)[50,100)[100,150)[150,200)[200,+∞)
顾客人数m2030n10
统计结果显示:100位顾客中购物款不低于100元的顾客占60%.据统计该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).(注:视频率为概率)
(Ⅰ)试确定m,n的值,并估计该商场每日应准备纪念品的数量;
(Ⅱ)现有4人去该商场购物,求获得纪念品的人数ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y均为正值,且满足x+2y+xy=7,以x为自变量,试写出关于x函数解析式,并求出定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-m|(m为常数),对任意的x∈R,f(x+3)=f(-x)恒成立.
有下列四种说法:
①m=3;     ②f(x)是偶函数;
③若函数g(x)=f(x)+|2x-b|(b为常数)的图象关于直线x=1对称,则b=1;
④已知定义在R上的函数h(x)对任意x均有h(x)=h(-x)成立,且当x∈[0,3]时,h(x)=f(x);又函数φ(x)=-x2+c(c为常数),若存在x1,x2∈[-1,3]使得|h(x1)-φ(x2)|<1成立,则c的取值范围是(-1,13),其中说法正确的
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输入的N=2014,则输出的S=(  )
A、2011B、2012
C、2013D、2014

查看答案和解析>>

同步练习册答案