已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,求过点及抛物线与轴两个交点的圆的方程;
(3)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;
(1);(2);(3)详见解析.
解析试题分析:(1)求出点关于直线的对称点的坐标,然后将对称点的坐标代入抛物线的方程求出的值,从而确定抛物线的方程;(2)先确定抛物线与轴的两个交点、,结合图形确定为直角三角形,并确定相应的斜边,以此求出圆心和半径,最终确定圆的方程;(3)结合图象与抛物线的定义确定点、、三点共线求出的最小值,并确定的直线方程,将直线方程与抛物线方程联立求出点的坐标.
(1)设点关于直线的对称点为坐标为,
则解得,
把点代入,解得,
所以抛物线的方程为;
(2)令得,
设抛物线与轴的两个交点从左到右分别为、,则C、,
显然是直角三角形,所以为所求圆的直径,由此可得圆心坐标为,
圆的半径,
故所求圆的方程为;
(3)是抛物线的焦点,抛物线的顶点为,
抛物线的准线为,
过点作准线的垂线,垂足为,由抛物线的定义知,
,当且仅当、、三点共线时“”成立,
即当点为过点所作的抛物线准线的垂线与抛物线的交点时,取最小值,
,这时点的坐标为;
考点:1.抛物线的定义与方程;2.圆的方程;3.直线与抛物线的位置关系
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,已知双曲线的右焦点,点分别在的两条渐近线上,轴,∥(为坐标原点).
(1)求双曲线的方程;
(2)过上一点的直线与直线相交于点,与直线相交于点,证明点在上移动时,恒为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个焦点为,且离心率为.
(1)求椭圆方程;
(2)斜率为的直线过点,且与椭圆交于两点,为直线上的一点,若△为等边三角形,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左右顶点分别为,离心率.
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A、B为抛物线C:y2 = 4x上的两个动点,点A在第一象限,点B在第四象限l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.
(1)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;
(2)设C、D为直线l1、l2与直线x = 4的交点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆过点,两焦点为、,是坐标原点,不经过原点的直线与椭圆交于两不同点、.
(1)求椭圆C的方程;
(2) 当时,求面积的最大值;
(3) 若直线、、的斜率依次成等比数列,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com