精英家教网 > 高中数学 > 题目详情
15.已知集合A={x|x=2k+1,k∈Z},B={x|0<x<5},则A∩B={1,3}.

分析 由A与B,求出两集合的交集即可.

解答 解:∵A={x|x=2k+1,k∈Z},B={x|0<x<5},
∴A∩B={1,3},
故答案为:{1,3}.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.记[x]表示不超过x的最大整数,执行如图所示的程序框图,则输出S的值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等式 x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定义映射f(a1,a2,a3,a4)=b1-b2+b3-b4,则f(2,0,1,6)等于(  )
A.-3B.3C.9D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值为4,最小值为2,且f(x0)=2,则f(x0+$\frac{π}{4}}$)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求证:AF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若点P,Q分别是曲线y=$\frac{x+4}{x}$与直线4x+y=0上的动点,则线段PQ长的最小值为$\frac{7\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.长时间上网严重影响着学生的健康,某校为了解甲、乙两班学生上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周上网时长作为样本,统计数据如表:
甲班101215182436
乙班121622262838
如果学生平均每周上网的时长超过19小时,则称为“过度上网”.
(1)从甲班的样本中有放回地抽取3个数据,求恰有1个数据为“过度上网”的概率;
(2)从甲班、乙班的样本中各随机抽取2名学生的数据,记“过度上网”的学生人数为X,写出X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直三棱柱ABC-A1B1C1中,AB⊥AC,A1A=AB=AC,D是AB中点.
(1)记平面B1C1D∩平面A1C1CA=l,在图中作出l,并说明画法;
(2)求直线l与平面B1C1CB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC中,若sinC=(${\sqrt{3}$cosA+sinA)cosB,则(  )
A.B=$\frac{π}{3}$B.2b=a+c
C.△ABC是直角三角形D.a2=b2+c2或2B=A+C

查看答案和解析>>

同步练习册答案