精英家教网 > 高中数学 > 题目详情
7.长时间上网严重影响着学生的健康,某校为了解甲、乙两班学生上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周上网时长作为样本,统计数据如表:
甲班101215182436
乙班121622262838
如果学生平均每周上网的时长超过19小时,则称为“过度上网”.
(1)从甲班的样本中有放回地抽取3个数据,求恰有1个数据为“过度上网”的概率;
(2)从甲班、乙班的样本中各随机抽取2名学生的数据,记“过度上网”的学生人数为X,写出X的分布列和数学期望E(X).

分析 (1)确定为独立重复试验类型即可求解概率P(A)=${C}_{3}^{1}•\frac{1}{3}•(\frac{2}{3})^{2}$=$\frac{4}{9}$;
(2)确定随机变量ξ的可能取值为0,1,2,3,4.利用排列组合知识求解相应的概率类型,得出分布列,可求数学期望.

解答 解:(1)设“恰有一个数据为过度上网”为事件A,则P(A)=${C}_{3}^{1}•\frac{1}{3}•(\frac{2}{3})^{2}$=$\frac{4}{9}$  …(3分)
(2)甲组六人中有两人过度上网,乙组六人中有四人过度上网,则
P(X=0)=$\frac{{C}_{4}^{2}{C}_{2}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{6}{225}$,P(X=1)=$\frac{{C}_{4}^{1}{C}_{2}^{1}{C}_{2}^{2}+{C}_{2}^{1}{C}_{4}^{1}{C}_{4}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{56}{225}$,
P(X=2)=$\frac{{C}_{4}^{1}{C}_{2}^{1}{C}_{4}^{1}{C}_{2}^{1}+{C}_{4}^{2}{C}_{4}^{2}+{C}_{2}^{2}{C}_{2}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{101}{225}$,
P(X=3)=$\frac{{C}_{2}^{2}{C}_{4}^{1}{C}_{2}^{1}+{C}_{4}^{2}{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{56}{225}$,P(X=4)=$\frac{{C}_{2}^{2}{C}_{4}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{6}{225}$   …(8分)

X01234
P$\frac{6}{225}$$\frac{56}{225}$$\frac{101}{225}$$\frac{56}{225}$$\frac{6}{225}$
∴E(X)=$\frac{56}{225}$+2×$\frac{101}{225}$+3×$\frac{56}{225}$+4×$\frac{6}{225}$=2.
答:数学期望为2 …(10分)

点评 本题综合考察了离散型的概率分布列,数学期望,考察了学生的实际问题的分析能力,计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x0∈R,sinx0=$\frac{{\sqrt{5}}}{2}$;命题q:?x∈R,x2+x+1>0,给出下列结论:
(1)命题p∧q是真命题;
(2)命题p∧(¬q)是假命题;
(3)命题(¬p)∨q是真命题;
(4)(¬p)∨(¬q)是假命题.
其中正确的命题是(  )
A.(2)(3)B.(2)(4)C.(3)(4)D.(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,一只蚂蚁沿侧面CC1D1D从C点出发,经过棱DD1上的一点M到达A1,当蚂蚁所走的路程最短时,
(Ⅰ)求B1M的长;
(Ⅱ)求证:B1M⊥平面MAC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x=2k+1,k∈Z},B={x|0<x<5},则A∩B={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在集合A={1,2,3,4,…,2n}中,任取m(m≤n,m,n∈N*)个元素构成集合Am.若Am的所有元素之和为偶数,则称Am为A的偶子集,其个数记为f(m);若Am的所有元素之和为奇数,则称Am为A的奇子集,其个数记为g(m).令F(m)=f(m)-g(m).
(1)当n=2时,求F(1),F(2),F(3)的值;
(2)求F(m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,几何体ABCA1B1C1中,面ABC是边长为2的正三角形,AA1,BB1,CC1都垂直于面ABC,且AA1=2BB1=2CC1=2,D为B1C1的中点,E为A1D的中点.
(Ⅰ)求证:AE⊥面A1B1C1
(Ⅱ)求BC1与面A1B1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+2x.
(1)用定义证明函数f(x)在(0,+∞)上是增函数;
(2)设g(x)=ln$\frac{x+2}{x-2}$,若对任意x1∈(0,1),x2∈(k,k+1)(k∈N),使f(x1)<g(x2),求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$与x轴负半轴交于点C,A为椭圆第一象限上的点,直线OA交椭圆于另一点B,椭圆的左焦点为F,若直线AF平分线段BC,则椭圆的离心率等于(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设△ABC的内角,A,B,C对边的边长分别为a,b,c,且acosB-bcosA=$\frac{1}{2}$c.
(1)求$\frac{tanA}{tanB}$的值;
(2)求tan(A-B)的最大值.

查看答案和解析>>

同步练习册答案