| A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 3 | D. | $\frac{1}{2}$ |
分析 由题意可得C(-a,0),F(-c,0),设A(m,n),可得B(-m,-n),运用中点坐标公式和三点共线的条件:斜率相等,结合离心率公式计算即可得到所求值.
解答 解:由题意可得C(-a,0),F(-c,0),
设A(m,n),可得B(-m,-n),
可得BC的中点H为(-$\frac{a+m}{2}$,-$\frac{n}{2}$),
由A,F,H三点共线,可得:
kAF=kHF,
即为$\frac{n}{m+c}$=$\frac{\frac{n}{2}}{-c+\frac{a+m}{2}}$,
即m+c=-2c+a+m,
即有a=3c,e=$\frac{c}{a}$=$\frac{1}{3}$.
故选:A.
点评 本题考查椭圆的离心率的求法,注意运用中点坐标公式和三点共线的条件:斜率相等,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | 9 | D. | 2016 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲班 | 10 | 12 | 15 | 18 | 24 | 36 |
| 乙班 | 12 | 16 | 22 | 26 | 28 | 38 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | $\frac{1}{4}$ | C. | 4 | D. | -$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | $\sqrt{3}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B=$\frac{π}{3}$ | B. | 2b=a+c | ||
| C. | △ABC是直角三角形 | D. | a2=b2+c2或2B=A+C |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com