精英家教网 > 高中数学 > 题目详情
9.设△ABC的内角,A,B,C对边的边长分别为a,b,c,且acosB-bcosA=$\frac{1}{2}$c.
(1)求$\frac{tanA}{tanB}$的值;
(2)求tan(A-B)的最大值.

分析 (1)由条件利用正弦定理、诱导公式可得sin(A-B)=$\frac{1}{2}$sin(A+B),再利用两角和差的三角公式、同角三角的基本关系,求得 $\frac{tanA}{tanB}$ 的值.
(2)利用两角和差的正切公式,基本不等式,求得tan(A-B)的最大值.

解答 解:(1)△ABC中,∵acosB-bcosA=$\frac{1}{2}$c,∴sinAcosB-sinBcosA=$\frac{1}{2}$sinC,
即sin(A-B)=$\frac{1}{2}$sin(A+B),即 sinAcosB-sinBcosA=$\frac{1}{2}$(sinAcosB+sinBcosA ),
∴sinAcosB=3sinBcosA,∴$\frac{tanA}{tanB}$=3.
(2)∵tan(A-B)=$\frac{tanA-tanB}{1+tanAtanB}$=$\frac{2tanB}{1+{3tan}^{2}B}$=$\frac{2}{\frac{1}{tanB}+3tanB}$≤$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
则tan(A-B)的最大值为$\frac{\sqrt{3}}{3}$,此时,$\frac{1}{tanB}$=3tanB,即 tanB=$\frac{\sqrt{3}}{3}$.

点评 本题主要考查正弦定理、诱导公式,两角和差的正切公式,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.长时间上网严重影响着学生的健康,某校为了解甲、乙两班学生上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周上网时长作为样本,统计数据如表:
甲班101215182436
乙班121622262838
如果学生平均每周上网的时长超过19小时,则称为“过度上网”.
(1)从甲班的样本中有放回地抽取3个数据,求恰有1个数据为“过度上网”的概率;
(2)从甲班、乙班的样本中各随机抽取2名学生的数据,记“过度上网”的学生人数为X,写出X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个多面体的三视图如图所示,则该几何体的外接球(几何体的所有顶点都在球面上)的体积为$4\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC中,若sinC=(${\sqrt{3}$cosA+sinA)cosB,则(  )
A.B=$\frac{π}{3}$B.2b=a+c
C.△ABC是直角三角形D.a2=b2+c2或2B=A+C

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,点D(0,$\sqrt{3}$)在椭圆M上,过原点O作直线交椭圆M于A、B两点,且点A不是椭圆M的顶点,过点A作x轴的垂线,垂足为H,点C是线段AH的中点,直线BC交椭圆M于点P,连接AP
(Ⅰ)求椭圆M的方程及离心率;
(Ⅱ)求证:AB⊥AP.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三角形的一边长为13,这条边所对应的角为60°,另外两边之比为4:3,则这个三角形的面积为(  )
A.39$\sqrt{3}$B.78$\sqrt{3}$C.39D.78

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线f(x)=sin(4x+$\frac{π}{3}$)+ax在x=0处的切线与直线x+3y=1垂直,则实数a的值为(  )
A.1B.2C.-3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某高中学校三个年级共有学生3 000人,其中一、二、三年级的人数比为2:3:1,用分层抽样的方法从中抽取一个容量为180的样本,则高三年级应抽取学生人数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设F1,F2为椭圆C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=(  )
A.$\frac{7}{16}$B.$\frac{25}{16}$C.-$\frac{7}{16}$D.-$\frac{25}{16}$

查看答案和解析>>

同步练习册答案