精英家教网 > 高中数学 > 题目详情
某地一渔场的水质受到了污染.渔场的工作人员对水质检测后,决定往水中投放一种药剂来净化水质. 已知每投放质量为个单位的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升)满足y=mf(x),其中,当药剂在水中释放的浓度不低于6(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于6(毫克/升)且不高于18(毫克/升)时称为最佳净化.
(1)如果投放的药剂质量为m=6,试问渔场的水质达到有效净化一共可持续几天?
(2)如果投放的药剂质量为m,为了使在8天(从投放药剂算起包括第8天)之内的渔场的水质达到最佳净化,试确定应该投放的药剂质量m的取值范围.
(1)8天;(2)

试题分析:(1)由已知得,经过x天该药剂在水中释放的浓度 y=mf(x)是关于自变量的分段函数,渔场的水质达到有效净化,只需,当m=6时,,相当于知道函数值的取值范围,求自变量的取值范围,即可持续的天数确定;(2)由题意知,为了使在8天(从投放药剂算起包括第8天)之内的渔场的水质达到最佳净化,只需在这8天内的每一天均有恒成立即可,转化为求分段函数求值域问题,使其含于即可.
(1)由题设:投放的药剂质量为,渔场的水质达到有效净化 
 
,即:
所以如果投放的药剂质量为,自来水达到有效净化一共可持续8天   .   6分
(2)由题设:,∵
,且
,所以,投放的药剂质量m的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义域为的函数同时满足以下三个条件:
(1) 对任意的,总有;(2);(3) 若,且,则有成立,则称为“友谊函数”,请解答下列各题:
(1)若已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?并给出理由.
(3)已知为“友谊函数”,假定存在,使得, 求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为(30-R)万件,要使附加税不少于128万元,则R的取值范围是(  )
A.[4,8]B.[6,10]C.[4%,8%]D.[6%,100%]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)满足f(x)=1+flog2x,则f(2)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数定义在上,对任意的,且.
(1)求,并证明:
(2)若单调,且.设向量,对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试判断函数内零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2011•山东)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是(  )
A.﹣9B.﹣3C.9D.15

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=,若f(-4)=f(0),f(-2)=0,则关于x的不等式f(x)≤1的解集为(  )
A.(-∞,-3]∪[-1,+∞)
B.[-3,-1]
C.[-3,-1]∪(0,+∞)
D.[-3,+∞)

查看答案和解析>>

同步练习册答案