精英家教网 > 高中数学 > 题目详情
18.复数z满足$\frac{1+z}{1-z}$=i,则|z|=1.

分析 直接由$\frac{1+z}{1-z}$=i利用复数代数形式的乘除运算求出z,则z的模可求.

解答 解:∵$\frac{1+z}{1-z}$=i,
∴$z=\frac{-1+i}{1+i}=\frac{(-1+i)(1-i)}{(1+i)(1-i)}=\frac{2i}{2}=i$.
则|z|=1.
故答案为:1.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知tanα=-3,求下列各式的值;
(1)3sinαcosα;
(2)$\frac{3sinα+cosα}{5sinα+7cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.用适当的方法表示下列对象构成的集合
(1)绝对值不大于3的整数
(2)平面直角坐标系中不在第一、三象限内的点
(3)方程$\sqrt{2x+1}$+|y-2|=0的解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(α)=sin(π-α)tan($\frac{3π}{2}$-α),则f(-$\frac{49π}{4}$)的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C所对的边分别为a,b,c,cos2A=1-3cosA.求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设全集U=R,A={x|1<x<5},B={x|x≥3},则A∪B={x|x>1},(∁UA)∩B={x|x≥5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在△ABC中,A、B、C的对边分别为a、b、c,tanC=$\frac{sinA+sinB}{cosA+cosB}$,sin(B-A)=cosC.
(1)求A,B;
(2)若△ABC的面积S△ABC=3+$\sqrt{3}$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知6x=2,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R.设f(x)=$\left\{\begin{array}{l}{{f}_{1}(x)\\;{f}_{1}(x)≤{f}_{2}(x)}\\{{f}_{2}(x)\\;{f}_{1}(x)>{f}_{2}(x)}\end{array}\right.$.
(1)当a=1时,解不等式:f1(x)≤f2(x);
(2)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值;
(3)是否存在这样的a,使得当x∈[2,+∞)上,f(x)=f2(x)?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案