精英家教网 > 高中数学 > 题目详情
18.在数列{an}中,已知a1=1,an+1-an=sin$\frac{(n+1)π}{2}$,记Sn为数列{an}的前n项和,则S2016=(  )
A.1009B.1008C.1007D.1006

分析 由已知求出数列前几项,可得数列{an}是以4为周期的周期数列,则答案可求.

解答 解:由a1=1,an+1-an=sin$\frac{(n+1)π}{2}$,得
a2=1,a3=0,a4=0,a5=1,…
∴数列{an}是以4为周期的周期数列,
∴S2016=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a2013+a2014+a2015+a2016)=2×504=1008.
故选:B.

点评 本题考查数列递推式,考查了数列的函数特性,关键是对数列周期的发现,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3.

(1)写出f(x)的值域(不写过程);
(2)用五点作图法作出f(x)在一个周期上的图象;
(3)求f(x)的对称轴;  
(4)求f(x)的对称中心;
(5)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=$\frac{{x}^{2}+(1-m)x+1}{{e}^{x}}$.
(I)求f(x)的单调区间;
(Ⅱ)是否存在实数x1,x2∈[0,1],使得不等式2f(x1)<f(x2)成立,若存在,求出m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x(ex-1)-ax2
(Ⅰ)当x≥0时,f(x)≥0恒成立,求实数a的取值范围;
(Ⅱ)求证:$\frac{ln2}{2}$×$\frac{ln3}{3}×\frac{ln4}{4}$×…×$\frac{lnn}{n}$<$\frac{1}{n}$(n≥2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,在(0,+∞)上为增函数的是(  )
A.y=cosxB.y=xexC.y=x3-xD.y=lnx-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知两数f(x)=alnx-x2,若对区间(0,1)内任意两个实数x1,x2,且x1≠x2,不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>1恒成立.则实数a的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.和-$\frac{7π}{8}$终边相同的角为$-\frac{7π}{8}+2kπ,k∈Z$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设点P对应的复数为-3-3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标可能为(  )
A.(3,$\frac{3}{4}$π)B.(3,$\frac{5}{4}$π)C.(3$\sqrt{2}$,$\frac{3}{4}$π)D.(3$\sqrt{2}$,$\frac{5}{4}$π)

查看答案和解析>>

同步练习册答案