精英家教网 > 高中数学 > 题目详情
8.设点P对应的复数为-3-3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标可能为(  )
A.(3,$\frac{3}{4}$π)B.(3,$\frac{5}{4}$π)C.(3$\sqrt{2}$,$\frac{3}{4}$π)D.(3$\sqrt{2}$,$\frac{5}{4}$π)

分析 利用直角坐标与极坐标的互化公式即可得出.

解答 解:∵点P对应的复数为-3-3i,∴直角坐标为P(-3,-3).
∴ρ=$\sqrt{(-3)^{2}×2}$=3$\sqrt{2}$,θ=$π+\frac{π}{4}$=$\frac{5π}{4}$.
故选:D.

点评 本题考查了直角坐标与极坐标的互化公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在数列{an}中,已知a1=1,an+1-an=sin$\frac{(n+1)π}{2}$,记Sn为数列{an}的前n项和,则S2016=(  )
A.1009B.1008C.1007D.1006

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知圆C:x2+y2+ax+2y+a2=0和定点A(1,2),要使过点A的圆C的切线有且仅有两条,则实数a的取值范围是(  )
A.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)C.(-∞,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某个体服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这种服装件数x之间的一组数据关系如表所示:
x3456789
y66697381899091
(1)画出散点图;
(2)求纯利y与每天销售件数x之间的回归直线方程;
(3)若该周内某天销售服装20件,估计可获纯利多少元(保留到整数位).
(附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=a+bx的斜率和截距的最小二乘估计分别为:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\sum_{i=1}^{7}$xi2=280,$\sum_{i=1}^{7}$yi2=45 309,$\sum_{i=1}^{7}$xiyi=3 487.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,A=60°,a=3,则△ABC的周长为(  )
A.4$\sqrt{3}$sin(B+60°)+3B.4$\sqrt{3}$sin(B+30°)+3C.6sin(B+60°)+3D.6sin(B+30°)+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2<16},B={x|x<m},若A∩B=A,则实数m的取值范围是(  )
A.[-4,+∞)B.[4,+∞)C.(-∞,-4]D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),曲线 C2的极坐标方程为ρcosθ-$\sqrt{2}$ρsinθ-4=0.
(1)求曲线C1的普通方程和曲线  C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log2(x+1),当点(x,y)是函数y=f(x)图象上的点时,点($\frac{x}{3}$,$\frac{y}{2}$)是函数y=g(x)图象上的点.
(1)写出函数y=g(x)的表达式;
(2)当g(x)-f(x)≥0时,求x的取值范围.
(3)若方程f(x)-g(x)-m=0有两个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-alnx,g(x)=lnx+$\frac{a}{x}$(a∈R).
(1)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(2)若在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案