精英家教网 > 高中数学 > 题目详情
3.在△ABC中,A=60°,a=3,则△ABC的周长为(  )
A.4$\sqrt{3}$sin(B+60°)+3B.4$\sqrt{3}$sin(B+30°)+3C.6sin(B+60°)+3D.6sin(B+30°)+3

分析 直接利用三角形的正弦定理和内角和定理建立关系求解.(此题答案中保留角B,注意利用角B建立关系)

解答 解:由正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$
可得:b=sinB$•2\sqrt{3}$,c=sinc$•2\sqrt{3}$
∵A+B+C=180°,
∴c=90°+30°-B
那么:c=sinc$•2\sqrt{3}$=sin(90°+(30°-B)$•2\sqrt{3}$=cos(30°-B)=3cosB+$\sqrt{3}$sinB
△ABC的周长:a+b+c=3+$2\sqrt{3}$sinB+3cosB+$\sqrt{3}$sinB=3+6sin(B+30°)
故选D

点评 本题考查三角形的正弦定理和内角和定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x(ex-1)-ax2
(Ⅰ)当x≥0时,f(x)≥0恒成立,求实数a的取值范围;
(Ⅱ)求证:$\frac{ln2}{2}$×$\frac{ln3}{3}×\frac{ln4}{4}$×…×$\frac{lnn}{n}$<$\frac{1}{n}$(n≥2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.使命题“存在x0∈[1,2],x02-a≤0”为真命题的一个充分不必要条件为(  )
A.a≥2B.a≤2C.a≥1D.a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,|AB|=4,|AC|=3,若D为线段BC的中点,且满足$\overrightarrow{DP}$•$\overrightarrow{BC}$=0,则$\overrightarrow{AP}•({\overrightarrow{AB}-\overrightarrow{AC}})$的值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.对于函数f(x)=lg$\frac{1+{2}^{x}+{4}^{x}•a}{3}$,若f(x)在(-∞,1)上有意义,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设点P对应的复数为-3-3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标可能为(  )
A.(3,$\frac{3}{4}$π)B.(3,$\frac{5}{4}$π)C.(3$\sqrt{2}$,$\frac{3}{4}$π)D.(3$\sqrt{2}$,$\frac{5}{4}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知cos(α-$\frac{π}{3}$)=$\frac{4}{5}$,则sin(α+$\frac{7π}{6}$)的值是$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x-lnx,g(x)=x2-ax.
(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函数h(x)图象上任意两点,且满足$\frac{{h({x_1})-h({x_2})}}{{{x_1}-{x_2}}}$>1,求实数a的取值范围;
(3)若?x∈(0,1],使f(x)≥$\frac{a-g(x)}{x}$成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对某班学生是爱好体育还是爱好文娱进行调查,根据调查得到的数据,所绘制的人数的二维条形图如图.
(1)根据图中的数据,填好2×2列表,并计算在多大的程度上可以认为性别与是否爱好体育有关系;
(2)若已从男生中选出3人,女生中选出2人,从这5人中选出2人担任活动的协调人,求选出的两人性别相同的概率.
总计
爱好体育aba+b
爱好文娱cdc+d
总计a+cb+da+b+c+d
参考数据:
p(k2≥k)0.50.40.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案