精英家教网 > 高中数学 > 题目详情
11.在△ABC中,|AB|=4,|AC|=3,若D为线段BC的中点,且满足$\overrightarrow{DP}$•$\overrightarrow{BC}$=0,则$\overrightarrow{AP}•({\overrightarrow{AB}-\overrightarrow{AC}})$的值为$\frac{7}{2}$.

分析 根据题意,利用向量表示出$\overrightarrow{AD}$、$\overrightarrow{AP}$,计算$\overrightarrow{DP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$),再求$\overrightarrow{AP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)的结果即可.

解答 解:如图所示,
BC的中点为D,则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{AP}$=$\overrightarrow{AD}$+$\overrightarrow{DP}$,
可得$\overrightarrow{DP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\overrightarrow{DP}$•$\overrightarrow{CB}$=0;
∴$\overrightarrow{AP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=($\overrightarrow{AD}$+$\overrightarrow{DP}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)+$\overrightarrow{DP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
=$\frac{1}{2}$(${\overrightarrow{AB}}^{2}$-${\overrightarrow{AC}}^{2}$)+$\overrightarrow{DP}$•$\overrightarrow{CB}$
=$\frac{1}{2}$×(42-32)+0
=$\frac{7}{2}$.
故答案为:$\frac{7}{2}$.

点评 本题主要考查两个向量的加减法的法则,以及其几何意义,体现了数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$].
(Ⅰ)求C的参数方程;
(Ⅱ)设点D在C上,C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:f(x)=x+$\frac{a}{x}$在区间[1,+∞)上是增函数;命题q:f(x)=x3+ax2+3x+1在R上有极值.若命题“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知圆C:x2+y2+ax+2y+a2=0和定点A(1,2),要使过点A的圆C的切线有且仅有两条,则实数a的取值范围是(  )
A.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)C.(-∞,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2(x+1)和g(x)=x+lnx,点A和点B分别在f(x)图象上和g(x)图象上,且始终保持两点的纵坐标相等,则A,B两点的最小距离是(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某个体服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这种服装件数x之间的一组数据关系如表所示:
x3456789
y66697381899091
(1)画出散点图;
(2)求纯利y与每天销售件数x之间的回归直线方程;
(3)若该周内某天销售服装20件,估计可获纯利多少元(保留到整数位).
(附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=a+bx的斜率和截距的最小二乘估计分别为:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\sum_{i=1}^{7}$xi2=280,$\sum_{i=1}^{7}$yi2=45 309,$\sum_{i=1}^{7}$xiyi=3 487.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,A=60°,a=3,则△ABC的周长为(  )
A.4$\sqrt{3}$sin(B+60°)+3B.4$\sqrt{3}$sin(B+30°)+3C.6sin(B+60°)+3D.6sin(B+30°)+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),曲线 C2的极坐标方程为ρcosθ-$\sqrt{2}$ρsinθ-4=0.
(1)求曲线C1的普通方程和曲线  C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ln(x+1)+$\frac{a}{x+2}$.
(1)当a=$\frac{25}{4}$时,求f(x)的单调递减区间;
(2)若当x>0时.f(x)>1恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案