精英家教网 > 高中数学 > 题目详情
2.已知命题p:f(x)=x+$\frac{a}{x}$在区间[1,+∞)上是增函数;命题q:f(x)=x3+ax2+3x+1在R上有极值.若命题“p∨q”为真命题,求实数a的取值范围.

分析 命题p:f′(x)=1-$\frac{a}{{x}^{2}}$.由f(x)=x+$\frac{a}{x}$在区间[1,+∞)上是增函数,可得f′(x)=1-$\frac{a}{{x}^{2}}$≥0在[1,+∞)上恒成立,即可得出a的取值范围.命题p:A={a|a≤1}.命题q:f′(x)=3x2+2ax+3.要使得f(x)=x3+ax2+3x+1在R上有极值,则f′(x)=3x2+2ax+3=0有两个不相等的实数解,可得△>0.由命题“p∨q”为真命题,可得p与q都为真命题.

解答 解:命题p:f′(x)=1-$\frac{a}{{x}^{2}}$.∵f(x)=x+$\frac{a}{x}$在区间[1,+∞)上是增函数,
则f′(x)=1-$\frac{a}{{x}^{2}}$≥0在[1,+∞)上恒成立,即a≤x2在[1,+∞)上恒成立,
∴a≤(x2min,∴a≤1.
命题p:A={a|a≤1}.命题q:f′(x)=3x2+2ax+3.
要使得f(x)=x3+ax2+3x+1在R上有极值,
则f′(x)=3x2+2ax+3=0有两个不相等的实数解,
△=4a2-4×3×3>0,解得a<-3或a>3.
命题q:B={a|a<-3,或a>3}.
∵命题“p∨q”为真命题,∴A∪B={a|a≤1,或a>3}.
∴所求实数a的取值范围为(-∞,1]∪(3,+∞).

点评 本题考查了利用导数研究函数的单调性、一元二次方程的实数根与判别式的关系、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中,a1=1,其前n项和为Sn,且满足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$(n≥2)
(1)求Sn
(2)证明:当n≥2时,S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x(ex-1)-ax2
(Ⅰ)当x≥0时,f(x)≥0恒成立,求实数a的取值范围;
(Ⅱ)求证:$\frac{ln2}{2}$×$\frac{ln3}{3}×\frac{ln4}{4}$×…×$\frac{lnn}{n}$<$\frac{1}{n}$(n≥2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知两数f(x)=alnx-x2,若对区间(0,1)内任意两个实数x1,x2,且x1≠x2,不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>1恒成立.则实数a的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC三个顶点是A(4,4),B(-4,2),C(2,0).
(1)求AB边中线CD所在直线方程;
(2)求AB边上的高线所在方程;
(3)求△ABC的重心G的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.和-$\frac{7π}{8}$终边相同的角为$-\frac{7π}{8}+2kπ,k∈Z$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.使命题“存在x0∈[1,2],x02-a≤0”为真命题的一个充分不必要条件为(  )
A.a≥2B.a≤2C.a≥1D.a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,|AB|=4,|AC|=3,若D为线段BC的中点,且满足$\overrightarrow{DP}$•$\overrightarrow{BC}$=0,则$\overrightarrow{AP}•({\overrightarrow{AB}-\overrightarrow{AC}})$的值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x-lnx,g(x)=x2-ax.
(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函数h(x)图象上任意两点,且满足$\frac{{h({x_1})-h({x_2})}}{{{x_1}-{x_2}}}$>1,求实数a的取值范围;
(3)若?x∈(0,1],使f(x)≥$\frac{a-g(x)}{x}$成立,求实数a的最大值.

查看答案和解析>>

同步练习册答案