精英家教网 > 高中数学 > 题目详情
12.已知数列{an}中,a1=1,其前n项和为Sn,且满足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$(n≥2)
(1)求Sn
(2)证明:当n≥2时,S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$-$\frac{1}{2n}$.

分析 (1)把已知数列递推式变形,可得数列{$\frac{1}{{S}_{n}}$}是以1为首项,以2为公差的等差数列,由此求得Sn
(2)由$\frac{1}{n}{S}_{n}=\frac{1}{n(2n-1)}<\frac{1}{n(2n-2)}=\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n})$,求和后由放缩法可得S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$-$\frac{1}{2n}$.

解答 (1)解:由an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$(n≥2),得${S}_{n}-{S}_{n-1}=\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$,
∴Sn-1-Sn=2SnSn-1,得$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}=2$,
∴数列{$\frac{1}{{S}_{n}}$}是以1为首项,以2为公差的等差数列,
∴$\frac{1}{{S}_{n}}=\frac{1}{{S}_{1}}+(n-1)×2=2n-1$,
则${S}_{n}=\frac{1}{2n-1}$;
(2)证明:当n≥2时,$\frac{1}{n}{S}_{n}=\frac{1}{n(2n-1)}<\frac{1}{n(2n-2)}=\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n})$,
∴S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$1+\frac{1}{2}(\frac{1}{1}-\frac{1}{2})+\frac{1}{2}(\frac{1}{2}-\frac{1}{3})+…+\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n})$=$\frac{3}{2}$-$\frac{1}{2n}$.

点评 本题考查数列递推式,考查等差关系的确定,训练了裂项相消法求数列的和,考查放缩法证明数列不等式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.长方体的长、宽、高分别为2,2,1,其顶点在同一个球面上,则该球的表面积9π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC的内角A,B,C的对边分别为a,b,c,若a2-b2+ac=0,A=30°,△ABC的面积为2$\sqrt{3}$,D为AB的中点,则CD=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:a1=1,an+1=3an+4n-2,(n∈N+
(1)求证:数列{an+2n}为等比数列,并求{an}的通项公式
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则△OAF外接圆方程为(  )
A.(x+1)2+(y-2)2=5B.(x-1)2+(y+2)2=5C.(x±1)2+(y?2)2=5D.(x±1)2+(y±2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知回归方程为$\hat y=8x-70$,则该方程在样本(10,13)处的残差为(  )
A.10B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)计算:${i^{2010}}+{(\sqrt{2}+\sqrt{2}i)^2}-{({\frac{{\sqrt{2}}}{1-i}})^4}$
(2)已知函数f(x)满足$f(x)=f'(1){e^{x-1}}-f(0)x+\frac{1}{2}{x^2}$;求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$].
(Ⅰ)求C的参数方程;
(Ⅱ)设点D在C上,C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:f(x)=x+$\frac{a}{x}$在区间[1,+∞)上是增函数;命题q:f(x)=x3+ax2+3x+1在R上有极值.若命题“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案