精英家教网 > 高中数学 > 题目详情
1.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$].
(Ⅰ)求C的参数方程;
(Ⅱ)设点D在C上,C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.

分析 (I)圆C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐标方程,利用三角函数基本关系式可得:参数方程.
(II)设切点D(1+cosα,sinα),根据CD∥l,可得$\frac{sinα}{1+cosα-1}$=$\sqrt{3}$,解出即可得出.

解答 解:(I)圆C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2-2x=0,配方为:(x-1)2+y2=1,圆心C(1,0).
可得参数方程为:$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α∈[0,π],α为参数).
(II)设切点D(1+cosα,sinα),∵CD∥l,则$\frac{sinα}{1+cosα-1}$=$\sqrt{3}$,tanα=$\sqrt{3}$,
解得α=$\frac{π}{3}$,
∴D$(\frac{3}{2},\frac{\sqrt{3}}{2})$.

点评 本题考查了极坐标方程化为直角坐标方程、圆的参数方程、圆的切线的性质、斜率计算公式、相互平行的直线斜率之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在△ABC中,AB=AC,E为AC边上的点,且AC=3AE,BE=2,则△ABC的面积的最大值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中,a1=1,其前n项和为Sn,且满足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$(n≥2)
(1)求Sn
(2)证明:当n≥2时,S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3.

(1)写出f(x)的值域(不写过程);
(2)用五点作图法作出f(x)在一个周期上的图象;
(3)求f(x)的对称轴;  
(4)求f(x)的对称中心;
(5)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x=2的倾斜角为(  )
A.1B.不存在C.$\frac{π}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=$\frac{{x}^{2}+(1-m)x+1}{{e}^{x}}$.
(I)求f(x)的单调区间;
(Ⅱ)是否存在实数x1,x2∈[0,1],使得不等式2f(x1)<f(x2)成立,若存在,求出m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x(ex-1)-ax2
(Ⅰ)当x≥0时,f(x)≥0恒成立,求实数a的取值范围;
(Ⅱ)求证:$\frac{ln2}{2}$×$\frac{ln3}{3}×\frac{ln4}{4}$×…×$\frac{lnn}{n}$<$\frac{1}{n}$(n≥2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知两数f(x)=alnx-x2,若对区间(0,1)内任意两个实数x1,x2,且x1≠x2,不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>1恒成立.则实数a的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,|AB|=4,|AC|=3,若D为线段BC的中点,且满足$\overrightarrow{DP}$•$\overrightarrow{BC}$=0,则$\overrightarrow{AP}•({\overrightarrow{AB}-\overrightarrow{AC}})$的值为$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案