精英家教网 > 高中数学 > 题目详情
11.在△ABC中,AB=AC,E为AC边上的点,且AC=3AE,BE=2,则△ABC的面积的最大值为$\frac{9}{4}$.

分析 根据余弦定理和同角的三角函数的关系以及三角形的面积公式和二次函数的性质计算即可.

解答 解:如图:设AB=AC=3x,
∵AC=3AE,
∴AE=x,
在三角形ABE中,根据余弦定理可得,
cosA=$\frac{A{B}^{2}+A{E}^{2}-B{E}^{2}}{2AB•AE}$=$\frac{10{x}^{2}-4}{6{x}^{2}}$=$\frac{5}{3}$-$\frac{2}{3{x}^{2}}$
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2}{3{x}^{2}}$$\sqrt{-4{x}^{4}+5{x}^{2}-1}$,
∴S△ABC=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}$×9×$\frac{2}{3}$$\sqrt{-4{x}^{4}+5{x}^{2}-1}$=3$\sqrt{-4({x}^{2}-\frac{5}{8})^{2}+\frac{9}{16}}$≤$\frac{9}{4}$
故答案为:$\frac{9}{4}$

点评 本题考查了余弦定理和同角的三角函数的关系以及三角形的面积公式和二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,若B=2A,则$\frac{{\sqrt{2}b}}{a}$的取值范围是(  )
A.$(\sqrt{2},2)$B.$(2,\sqrt{6})$C.$(\sqrt{2},\sqrt{3})$D.$(\sqrt{6},4)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.长方体的长、宽、高分别为2,2,1,其顶点在同一个球面上,则该球的表面积9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.平面直角坐标系xOy中,双曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、…、n(n≥2)的n个黑球,从甲、乙两盒中各抽取一个小球,抽到标号为1号红球和n号黑球的概率为$\frac{1}{12}$.
(Ⅰ)求n的值;
(Ⅱ)现从甲乙两盒各随机抽取1个小球,抽得红球的得分为其标号数;抽得黑球,若标号数为奇数,则得分为1,若标号数为偶数,则得分为0,设被抽取的2个小球得分之和为ξ,求ξ的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.960°的终边在第三象限.(填汉字)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC的内角A,B,C的对边分别为a,b,c,若a2-b2+ac=0,A=30°,△ABC的面积为2$\sqrt{3}$,D为AB的中点,则CD=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:a1=1,an+1=3an+4n-2,(n∈N+
(1)求证:数列{an+2n}为等比数列,并求{an}的通项公式
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$].
(Ⅰ)求C的参数方程;
(Ⅱ)设点D在C上,C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.

查看答案和解析>>

同步练习册答案