精英家教网 > 高中数学 > 题目详情
16.直线x=2的倾斜角为(  )
A.1B.不存在C.$\frac{π}{2}$D.2

分析 根据直线的倾斜角的定义,求得直线x=2的倾斜角.

解答 解:由于直线x=2垂直于x轴,它的倾斜角为$\frac{π}{2}$,
故选:C.

点评 本题主要考查直线的倾斜角的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、…、n(n≥2)的n个黑球,从甲、乙两盒中各抽取一个小球,抽到标号为1号红球和n号黑球的概率为$\frac{1}{12}$.
(Ⅰ)求n的值;
(Ⅱ)现从甲乙两盒各随机抽取1个小球,抽得红球的得分为其标号数;抽得黑球,若标号数为奇数,则得分为1,若标号数为偶数,则得分为0,设被抽取的2个小球得分之和为ξ,求ξ的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则△OAF外接圆方程为(  )
A.(x+1)2+(y-2)2=5B.(x-1)2+(y+2)2=5C.(x±1)2+(y?2)2=5D.(x±1)2+(y±2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)计算:${i^{2010}}+{(\sqrt{2}+\sqrt{2}i)^2}-{({\frac{{\sqrt{2}}}{1-i}})^4}$
(2)已知函数f(x)满足$f(x)=f'(1){e^{x-1}}-f(0)x+\frac{1}{2}{x^2}$;求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)为可导函数,且满足$\underset{lim}{△x→∞}$$\frac{f(1+2△x)-f(1)}{△x}$=-2,则函数y=f(x)在x=1处的导数为(  )
A.1B.-1C.1或-1D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$].
(Ⅰ)求C的参数方程;
(Ⅱ)设点D在C上,C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,a1=1,an+1-an=2n,则a50的值为(  )
A.2550B.2551C.2450D.2451

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(1-ax)1n(1+x)-x.
(1)当a=-1时,求函数f(x)在x=1处的切线方程;
(2)对任意的x∈(0,1],f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2(x+1)和g(x)=x+lnx,点A和点B分别在f(x)图象上和g(x)图象上,且始终保持两点的纵坐标相等,则A,B两点的最小距离是(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案