精英家教网 > 高中数学 > 题目详情

某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为(万元),当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为500元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

(1);(2)当时,即取得最大值1000万元.

解析试题分析:
对于有关利润的题目,要注意总销售额、成本,利润=总销售额-总成本,在题目中,如果含有的范围有几段,则要分论,函数写成分段函数形式;则由题知每件商品售价为0.05万元,则千件商品销售额为万元,在时,年利润;在,年利润,整理好结果用分段函数表示;(2)求利润最大,即是求函数的最大值,由于是分段函数,则分别求出每段函数的最大值,最终比较两段最大中的较大者,即是函数最大;由(1)可求则在时用二次函数的方法求最大,注意的范围,在中,利用均值不等式求出,注意等号成立的条件.
试题解析:(1)由题知每件商品售价为0.05万元,则千件商品销售额为万元,
时,年利润
,年利润


(2)当时,
此时,当时,取得最大值万元.                     
时,
时,即取得最大值1000万元.

所以,当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1000万元. 
考点:1.函数的实际应用,2.分段函数的解析式的求法,3.分段函数最大值的求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)已知,若,求的值;
(Ⅱ)设,当时,求上的最小值;
(Ⅲ)求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,且的解集是(1,5).
(l)求实数a,c的值;
(2)求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品在近天内每件的销售价格(元)与时间(天)的函数关系是该商品的日销售量(件)与时间(天)的函数关系是,设商品的日销售额为(销售量与价格之积)
(1)求商品的日销售额的解析式;
(2)求商品的日销售额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(Ⅰ)求的值;
(Ⅱ)证明函数上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是偶函数.
(1)求的值;
(2)证明:对任意实数,函数的图像与直线最多只有一个交点;
(3)设若函数的图像有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

相关部门对跳水运动员进行达标定级考核,动作自选,并规定完成动作成绩在八分及以上的定为达标,成绩在九分及以上的定为一级运动员. 已知参加此次考核的共有56名运动员.
(1)考核结束后,从参加考核的运动员中随机抽取了8人,发现这8人中有2人没有达标,有3人为一级运动员,据此请估计此次考核的达标率及被定为一级运动员的人数;
(2)经过考核,决定从其中的A、B、C、D、E五名一级运动员中任选2名参加跳水比赛(这五位运动员每位被选中的可能性相同). 写出所有可能情况,并求运动员E被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,记函数的最大值为.
(1)设,求的取值范围,并把表示为的函数
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

工厂生产某种产品,次品率与日产量(万件)间的关系为常数,且),已知每生产一件合格产品盈利元,每出现一件次品亏损元.
(1)将日盈利额(万元)表示为日产量(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:

查看答案和解析>>

同步练习册答案