分析 取AC中点O,连结VO,BO,则∠VOB是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角V-AB-C的大小.
解答
解:如图,正三棱锥V-ABC中,VB=$\sqrt{7}$,BC=2$\sqrt{3}$,
取AC中点O,连结VO,BO,
∵VA=VC=VB=$\sqrt{7}$,AB=AC=2$\sqrt{3}$,AO=CO=$\sqrt{3}$,
∴VO⊥AC,BO⊥AC,VO=$\sqrt{V{A}^{2}-A{O}^{2}}$=2,BO=$\sqrt{A{B}^{2}-A{O}^{2}}$=3,
∴∠VOB是二面角V-AB-C的平面角,
cos∠VOB=$\frac{V{O}^{2}+B{O}^{2}-V{B}^{2}}{2VO•BO}$=$\frac{4+9-7}{2×2×3}$=$\frac{1}{2}$,
∴∠VOB=60°.
∴二面角V-AB-C的大小为60°.
故答案为:60°.
点评 本题考查二面角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,0) | B. | (-$\frac{1}{2}$,0] | C. | (-$\frac{1}{2}$,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平行平移$\frac{π}{2}$个单位长度 | B. | 向右平行平移$\frac{π}{4}$个单位长度 | ||
| C. | 向右平行平移$\frac{π}{2}$个单位长度 | D. | 向左平行平移$\frac{π}{4}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com