精英家教网 > 高中数学 > 题目详情
在R上可导的函数f(x)=
1
3
x3+
1
2
ax2+2bx+c,当x∈(0,1)时取得极大值,当x∈(1,2)时取得极小值,则
b-4
a-3
的取值范围是(  )
A、(-
1
2
1
2
B、(-
1
2
1
4
C、(
1
4
,1)
D、(
1
2
,1)
考点:利用导数研究函数的极值
专题:计算题,导数的概念及应用
分析:据极大值点左边导数为正右边导数为负,极小值点左边导数为负右边导数为正得a,b的约束条件,据线性规划求出最值.
解答: 解:∵f(x)=
1
3
x3+
1
2
ax2+2bx+c,∴f′(x)=x2+ax+2b
∵函数f(x)在区间(0,1]内取得极大值,在区间(1,2]内取得极小值
∴f′(x)=x2+ax+2b=0在(0,1]和(1,2]内各有一个根
f′(0)>0,f′(1)≤0,f′(2)≥0
b>0
a+2b+1≤0
a+b+2≥0
,区域的三个顶点坐标为(-2,0),(-1,0),(-3,1),
b-4
a-3
表示点A(3,4)与可行域内的点B连线的斜率,
当(-1,0)时,
b-4
a-3
最大,最大为1;
当(-3,1)时,
b-4
a-3
最小,最小为
1
2

故选:D.
点评:考查学生利用导数研究函数极值的能力,以及会进行简单的线性规划的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}和{bn}的通项公式分别为an=3n+5,bn=4n+8,则它们的公共项组成的新数列{cn}的通项公式为cn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px(p>0)的焦点为F,准线为l,A、B为抛物线上的两个动点,且满足∠AFB=
π
3
,设线段AB的中点M在l上的投影为N,则
|MN|
|AB|
的最大值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
x2-x-2>0
2x2+(5+2k)x+5k<0
的解集中所含整数解只有-2,求k的取值范围(  )
A、[-3,2)
B、[-1,2)
C、[0,2)
D、[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列命题中,真命题是(  )
A、“若x=3,则x2=9”的逆命题
B、“x=1时,x2-3x+2=0”的否命题
C、若a>b,则ac2>bc2
D、“相似三角形的对应角相等”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<2π)图象上的一个最高点是(2,
2
),由这个最高点到相邻的最低点图象与x轴的交点为(6,0),则f(x)=(  )
A、
2
sin(
π
4
x+
π
4
B、
2
sin(
π
4
x-
π
8
C、
2
sin(
π
8
x+
π
4
D、
2
sin(
π
8
x-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若M为椭圆E:
x2
4
+
y2
3
=1上动点,直线L经过圆(x-1)2+y2=
1
2
的圆心P,且与圆P交于A、B两点,则2
MA
MB
的最大值为(  )
A、18B、17C、16D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-|x|,则f(x)是(  )
A、奇函数
B、偶函数
C、既是奇函数又是偶函数
D、非奇函数非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-2ax2-3x,x∈R.
(1)当a=0时,求函数f(x)的极大值和极小值;
(2)当x∈(0,+∞)时,f(x)≥ax恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案