【题目】已知函数f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值为1.
(1)求a+b的值;
(2)若
恒成立,求实数m的最大值.
【答案】
(1)解:
f(x)在区间(﹣∞,﹣b]上递减,在区间[﹣b,+∞)上递增,
所以f(x)min=a+b.
所以a+b=1.
(2)解:因为a>0,b>0,且a+b=1,
所以
,
又因为
,当且仅当
时,等号成立,
所以
时,
有最小值
.
所以
,所以实数m的最大值为 ![]()
【解析】(1)写出分段函数,得出f(x)min=a+b,即可求a+b的值;(2)因为a>0,b>0,且a+b=1,利用“1”的代换,求最值,根据
恒成立,求实数m的最大值.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】若对任意的正整数
,总存在正整数
,使得数列
的前
项和
,则称
是“回归数列”.
(1)①前
项和为
的数列
是否是“回归数列”?并请说明理由;
②通项公式为
的数列
是否是“回归数列”?并请说明理由;
(2)设
是等差数列,首项
,公差
,若
是“回归数列”,求
的值;
(3)是否对任意的等差数列
,总存在两个“回归数列”
和
,使得
成立,请给出你的结论,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形
是正方形,
与
均是以
为直角顶点的等腰直角三角形,点
是
的中点,点
是边
上的任意一点.
![]()
(1)求证:
:
(2)在平面
中,是否总存在与平面
平行的直线?若存在,请作出图形并说明:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2 , l1⊥l2 , 线段AF的垂直平分线与l2交于点P.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(2ax+1)+
﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣
时,方程f(1﹣x)=
有实根,求实数b的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,已知侧面ABB1A1是菱形,侧面BCC1B1是正方形,点A1在底面ABC的投影为AB的中点D. ![]()
(1)证明:平面AA1B1B⊥平面BB1C1C;
(2)设P为B1C1上一点,且
,求二面角A1﹣AB﹣P的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差d不为0,且
,
,…,
,…(k1<k2<…<kn<…)成等比数列,公比为q.
(1)若k1=1,k2=3,k3=8,求
的值;
(2)当
为何值时,数列{kn}为等比数列;
(3)若数列{kn}为等比数列,且对于任意n∈N* , 不等式
恒成立,求a1的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com