精英家教网 > 高中数学 > 题目详情

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.

年级名次
是否近视

1~50

951~1000

近视

41

32

不近视

9

18

附:P(K2≥3.841=0.05)K2=

【答案】
(1)解:根据表中的数据,计算观测值得;

k2= = ≈4.110>3.841,

因此在犯错误的概率不超过0.05的前提下,认为视力与学习成绩有关系;


(2)解:依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,

X可取0,1,2,3;

则P(X=0)= = ,P(X=1)= =

P(X=2)= = ,P(X=3)= =

所以,X的分布列为

X

0

1

2

3

P

X的数学期望为E(X)=0× +1× +2× +3× =1.


【解析】(1)根据表中的数据,计算观测值k2 , 对照数表,得出结论;(2)求出X的取值,计算对应的频率,求出X的分布列与数学期望值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4 坐标系与参数方程

已知函数,曲线在点处的切线为,若时,有极值.

(1)求的值;

(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,曲线的参数方程为,( 为参数).

(1)将两曲线化成普通坐标方程;

(2)求两曲线的公共弦长及公共弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:sin230°+sin290°+sin2150°= ,sin25°+sin265°+sin2125°= .通过观察上述两等式的规律,请你写出一般性的命题,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)= ,若关于x的方程[f(x)]2+af(x)﹣a﹣1=0(a∈R)有且只有7个不同实数根,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(

7

9

8

4

4

6

4

7

9

3


A.84,4.84
B.84,1.6
C.85,1.6
D.85,4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点M(x,y)在|x|≤1,|y|≤1时按均匀分布出现,试求满足:
(1)x+y≥0的概率;
(2)x+y<1的概率;
(3)x2+y2≥1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为椭圆C: + =1的右焦点,椭圆C上任意一点P到点F的距离与点P到直线l:x=m的距离之比为 ,求:
(1)直线l方程;
(2)设A为椭圆C的左顶点,过点F的直线交椭圆C于D、E两点,直线AD、AE与直线l分别相交于M、N两点.以MN为直径的是圆是否恒过一定点,若是,求出定点坐标,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,矩形中, ,将沿折起,得到如图所示的四棱锥,其中.

(1)证明:平面平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案