精英家教网 > 高中数学 > 题目详情
4.已知函敷f(x)=|x+2|-|x-1|,
(Ⅰ)若关于x的不等式f(x)≤m恒成立,求实数m的取值范围;
(Ⅱ)求不等式f(x)≥|x-1|-2的解集.

分析 (Ⅰ)利用绝对值三角不等式,求出f(x)的最小值,即可求实数m的取值范围;
(Ⅱ)分类讨论,去掉绝对值求不等式f(x)≥|x-1|-2的解集.

解答 解:(Ⅰ)由题意,f(x)=|x+2|-|x-1|≤|x+2-x+1=3,
∵关于x的不等式f(x)≤m恒成立,
∴m≥3;
(Ⅱ)不等式f(x)≥|x-1|-2可化为|x+2|-2|x-1|≥-2.
x≤-2时,-x-2+2x-2≥-2,解得x≥2,∴x∈∅;
-2<x<1时,x+2+2x-2≥-2,解得x≥-$\frac{2}{3}$,∴-$\frac{2}{3}$<x<1;
x≥1时,x+2-2x+2≥-2,解得x≤6,∴1≤x≤6;
综上所述,不等式f(x)≥|x-1|-2的解集为{x|-$\frac{2}{3}$<x≤6}.

点评 本题考查了含有绝对值的不等式的解法与应用问题,解题的关键是去掉绝对值,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.汉诺塔的游戏规则如下:如图有A,B,C三根套杆,在A上有n个大小不等的盘子,中间有孔可以套在杆子上面,大盘在下,小盘在下,现在要将A杆上面的所有盘子合部移动到C杆上面,每次只能移动一个盘子,且每根杆子上面的所有盘子大盘不能压在小盘上面;n个盘子全部移动完成后,所需的最少移动次数记为vn,例如v1=1,v2=3;请你耐心寻找规律,计算v5=(  )
A.31B.15C.11D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3}.
(1)求a,b的值及A,B;
(2)求(A∪B)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.
(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.
(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,$\frac{DE}{EF}=n$,试作出分别以$\frac{m}{n}、\frac{n}{m}$为两根且二次项系数为6的一个一元二次方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四边形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC
(Ⅰ)求证:A,B,C,P四点共圆;
(Ⅱ)若∠CAD=$\frac{π}{3}$,AB=1,求四边形ABCP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=|x-1|+|x-2|+…+|x-99|+|x-100|,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线y=kx+2k与圆(x-1)2+y2=4相交于M,N两点,若|MN|≤2,则k的取值范围是(  )
A.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]B.(-∞,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)C.[-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{5}}{5}$]D.(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=1,AA1=2,D、E分别为棱AB、BC的中点,点F在棱AA1上.
(1)证明:直线A1C1∥平面FDE;
(2)若二面角F-DE-A的大小为$\frac{π}{4}$,求AF:AA1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数既不是偶函数也不是奇函数的是(  )
A.f(x)=ex+e-xB.f(x)=ex-e-xC.f(x)=x|x|D.f(x)=cos(x-1)

查看答案和解析>>

同步练习册答案