分析 (1)若设AC与⊙I的切点为M,那么又切线长定理知:∠MCI=∠ECI,即∠ACD=∠KCD,而CD⊥AK,可得两个条件:AC=CK,AD=DK;同样由切线长定理知:BE=BF,AF=AM=AC+CE,因此可得$\frac{KD}{DA}•\frac{AF}{FB}•\frac{BE}{EK}=1$,即可证得D、E、F三点共线.
(2)由于AB=AC,即△ABC是等腰三角形,而BC是⊙I的切线,即IE⊥BC,由切线长定理知AI平分∠CAB,即AI⊥BC,因此A、E、I三点共线,由此可得两组相似三角形:则△ABE∽△AIF,△ADI∽△CEI,根据第二组相似三角形得到的比例线段可求得⊙I的半径,根据第一组相似三角形可得AD、ID的比例关系,联立AI的长以及勾股定理可确定AD、DI的长;易知∠ADI、∠AFI都是直角,因此A、F、I、D四点共圆(以AI为直径),即可证得△DEI∽△AEF,根据DI、AF的长可得m、n的值,进而可根据韦达定理得出所求的一元二次方程.
解答 解:(1)结论:D、E、F三点是同在一条直线上.(1分)
证明:分别延长AD、BC交于点K,由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,
再由切线长定理得:AC+CE=AF,BE=BF,(3分)
∴KE=AF.
∴$\frac{KD}{DA}•\frac{AF}{FB}•\frac{BE}{EK}=1$,由梅涅劳斯定理的逆定理可证D、E、F三点共线. (3分)
(2)∵AB=AC=5,BC=6,∴A、E、I三点共线,CE=BE=3,AE=4,
连结IF,则△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四点共圆.(2分)
设⊙I的半径为r,则:$\frac{3}{r}=\frac{4}{8},r=6$,∴$AI=10,\frac{AD}{ID}=\frac{3}{6}$,即$AD=2\sqrt{5}$,$ID=4\sqrt{5}$,
∴由△AEF∽△DEI得:$m={(\frac{{4\sqrt{5}}}{8})^2}=\frac{5}{4},\frac{DE}{AE}=\frac{{4\sqrt{5}}}{8}=\frac{{\sqrt{5}}}{2},DE=2\sqrt{5}$,$\frac{IE}{EF}=\frac{{\sqrt{5}}}{2},EF=\frac{12}{5}\sqrt{5}$,
∴$n=\frac{5}{6}$. (4分)
∴$\left\{{\begin{array}{l}{\frac{m}{n}+\frac{n}{m}=\frac{13}{6}}\\{\frac{m}{n}•\frac{n}{m}=1}\end{array}}\right.$,
因此,由韦达定理可知:分别以$\frac{m}{n}、\frac{n}{m}$为两根且二次项系数为6的一个一元二次方程是6x2-13x+6=0. (3分)
点评 此题考查了切线的性质、切线长定理、三点共线的判定方法、相似三角形的判定和性质、梅氏定理、勾股定理以及韦达定理等知识的综合应用,难度较大.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(2,{e^{\frac{3}{2}}})$ | B. | $(\frac{3}{2},+∞)$ | C. | $(ln2,{e^{\frac{3}{2}}})$ | D. | $(ln2,\frac{3}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com