【题目】已知cosα,sinα是函数f(x)=x2﹣tx+t(t∈R)的两个零点,则sin2α=( )
A.2﹣2
B.2 ﹣2
C. ﹣1
D.1﹣
【答案】A
【解析】解:∵cosα,sinα是函数f(x)=x2﹣tx+t(t∈R)的两个零点, ∴sinα+cosα=t,sinαcosα=t,
由sin2α+cos2α=1,
得(sinα+cosα)2﹣2sinαcosα=1,即t2﹣2t=1,解得t=1- .
∴sin2α=2sinαcosα=2t=2-2 .
故选:A.
【考点精析】根据题目的已知条件,利用函数的零点与方程根的关系的相关知识可以得到问题的答案,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.若命题p:?x0∈R,x02﹣x0+1<0,则¬p:?x?R,x2﹣x+1≥0
B.已知相关变量(x,y)满足回归方程 =2﹣4x,若变量x增加一个单位,则y平均增加4个单位
C.命题“若圆C:(x﹣m+1)2+(y﹣m)2=1与两坐标轴都有公共点,则实数m∈[0,1]为真命题
D.已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4﹣a)=0.68
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+x2﹣x,其中a∈R.
(Ⅰ)若a>0,讨论f(x)的单调性;
(Ⅱ)当x≥1时,f(x)≥0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的短轴长为2 ,离心率e= ,
(1)求椭圆C的标准方程:
(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的内切圆半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求证:平面PBD⊥平面PAC;
(2)求二面角D﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年下半年,锦阳市教体局举行了市教育系统直属单位职工篮球比赛,以增强直属单位间的交流与合作,组织方统计了来自A1 , A2 , A3 , A4 , A5等5个直属单位的男子篮球队的平均身高与本次比赛的平均得分,如表所示:
单位 | A1 | A2 | A3 | A4 | A5 |
平均身高x(单位:cm) | 170 | 174 | 176 | 181 | 179 |
平均得分y | 62 | 64 | 66 | 70 | 68 |
注:回归当初 中斜率和截距最小二乘估计公式分别为 , .
(1)根据表中数据,求y关于x的线性回归方程;(系数精确到0.01)
(2)若M队平均身高为185cm,根据(I)中所求得的回归方程,预测M队的平均得分(精确到0.01)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)是定义在R上的奇函数,且f(x﹣1)为偶函数,当x∈[0,1]时, ,若函数g(x)=f(x)﹣x﹣b恰有一个零点,则实数b的取值集合是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数 的图像向左平移 个单位,再向上平移1个单位,得到g(x)的图像.若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],则2x1﹣x2的最大值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.y=sinx的图象向右平移个单位得y=cosx的图象
B.y=cosx的图象向右平移个单位得y=sinx的图象
C.当φ>0时,y=sinx的图象向右平移φ个单位可得y=sin(x+φ)的图象
D.当φ<0时,y=sinx的图象向左平移φ个单位可得y=sin(x﹣φ)的图象
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com