分析 (1)推导出PA⊥AB,AB⊥AD,从而AB⊥平面PAD,进而AB⊥PD,再由AE⊥PD,能证明PD⊥平面ABE.
(II)四棱锥P-ABCD外接球球心是线段BD和线段PA的垂直平分线交点O,由此能求出四棱锥P-ABCD外接球的体积.
解答
证明:(1)∵PA⊥底面ABCD,AB?底面ABCD,
∴PA⊥AB,又∵底面ABCD为矩形,
∴AB⊥AD,PA∩AD,
又PA?平面PAD,AD?平面PAD,
∴AB⊥平面PAD,又PD?平面PAD,∴AB⊥PD,AD=AP,E为PD中点,
∴AE⊥PD,AE∩AB=A,AE?平面ABE,AB?平面ABE,
∴PD⊥平面ABE.
解:(II)四棱锥P-ABCD外接球球心是线段BD和线段PA的垂直平分线交点O,
由已知BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{2}^{2}+(2\sqrt{7})^{2}}$=4$\sqrt{2}$,
设C为BD中点,∴AM=2$\sqrt{2}$,OM=$\frac{1}{2}$AP=1,
∴OA=$\sqrt{A{M}^{2}+O{M}^{2}}$=$\sqrt{{1}^{2}+(2\sqrt{2})^{2}}$=3,
∴四棱锥P-ABCD外接球的体积是$\frac{4}{3}πA{M}^{3}$=36π.
点评 本题考查线面垂直的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,4) | B. | (4,6] | C. | (-4,6) | D. | (-4,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com