精英家教网 > 高中数学 > 题目详情
3.已知数列{an}满足$\sum_{i=1}^{n}$(-1)i+1$\frac{{a}_{i}}{{2}^{i}+1}$=$\frac{1}{{2}^{n}}$,则数列{an}的通项公式an=$\left\{\begin{array}{l}{\frac{3}{2},n=1}\\{(-1)^{n}(\frac{1}{{2}^{n}}+1),n≥2}\end{array}\right.$.

分析 n=1时,$\frac{{a}_{1}}{3}$=$\frac{1}{2}$,可得a1.n≥2时,$\sum_{i=1}^{n}$(-1)i+1$\frac{{a}_{i}}{{2}^{i}+1}$=$\frac{1}{{2}^{n}}$,$\sum_{i=1}^{n-1}$(-1)i$•\frac{{a}_{i}}{{2}^{i}+1}$=$\frac{1}{{2}^{n-1}}$,相减可得:(-1)n$\frac{{a}_{n}}{{2}^{n}+1}$=$\frac{1}{{2}^{n}}$,可得an

解答 解:n=1时,$\frac{{a}_{1}}{3}$=$\frac{1}{2}$,∴a1=$\frac{3}{2}$.
n≥2时,$\sum_{i=1}^{n}$(-1)i+1$\frac{{a}_{i}}{{2}^{i}+1}$=$\frac{1}{{2}^{n}}$,$\sum_{i=1}^{n-1}$(-1)i$•\frac{{a}_{i}}{{2}^{i}+1}$=$\frac{1}{{2}^{n-1}}$,相减可得:(-1)n$\frac{{a}_{n}}{{2}^{n}+1}$=$\frac{1}{{2}^{n}}$,可得an=(-1)n$(1+\frac{1}{{2}^{n}})$.
∴an=$\left\{\begin{array}{l}{\frac{3}{2},n=1}\\{(-1)^{n}(\frac{1}{{2}^{n}}+1),n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{\frac{3}{2},n=1}\\{(-1)^{n}(\frac{1}{{2}^{n}}+1),n≥2}\end{array}\right.$.

点评 本题考查了等数列递推关系、数列通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP=2,AB=2$\sqrt{7}$,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)求四棱锥P-ABCD外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xex-a(lnx+x).
(1)若函数f(x)恒有两个零点,求a的取值范围;
(2)若对任意x>0,恒有不等式f(x)≥1成立.
①求实数a的值;
②证明:x2ex>(x+2)lnx+2sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在正四棱锥P-ABCD中,AB=2,PA=$\sqrt{6}$,E是棱PC上的点,过AE作平面分别与棱PB、PD交于M、N两点,且$\frac{PM}{PB}$=$\frac{PN}{PD}$=$\frac{2}{3}$.
(1)若$\frac{PE}{PC}$=λ,试猜想λ的值,并证明猜想结果;
(2)求四棱锥P-AMEN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知过点(-2,0)的直线与圆O:x2+y2-4x=0相切与点P(P在第一象限内),则过点P且与直线$\sqrt{3}$x-y=0垂直的直线l的方程为(  )
A.x+$\sqrt{3}$y-2=0B.x+$\sqrt{3}$y-4=0C.$\sqrt{3}$x+y-2=0D.x+$\sqrt{3}$y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}的前n项和为Sn,且S5=15,a2=5,则公差d等于(  )
A.-3B.-2C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.
(Ⅰ)求T关于x的函数解析式;
(Ⅱ)根据直方图估计利润T不少于100元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量x∈[60,70),则取x=65,且x=65的概率等于需求量落入[60,70)的频率),求T的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1-ABCE,其中平面D1AE⊥平面ABCE.
(Ⅰ)证明:BE⊥平面D1AE;
(Ⅱ)求三棱锥C-BD1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):
A444.555.566
B4.5566.56.5777.5
C555.566777.588
(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;
(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;
(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c的最小值(结论不要求证明).

查看答案和解析>>

同步练习册答案