精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=xex-a(lnx+x).
(1)若函数f(x)恒有两个零点,求a的取值范围;
(2)若对任意x>0,恒有不等式f(x)≥1成立.
①求实数a的值;
②证明:x2ex>(x+2)lnx+2sinx.

分析 (1)利用导数的运算法则可得f′(x),对a分类讨论,当a≤0时,f'(x)>0,故f(x)单调递增,舍去.当a>0时,f'(x)=0有唯一解x=x0,此时${e^{x_0}}{x_0}=a$,求出极值,进而得出答案.
(2)①当a≤0时,不符合题意.当a>0时,由(1)可知,f(x)min=a-alna,故只需a-alna≥1.令$t=\frac{1}{a}$,上式即转化为lnt≥t-1,利用导数研究其单调性极值即可得出.
②由①可知x2ex-xlnx≥x2+x,因而只需证明:?x>0,恒有x2+x>2lnx+2sinx.注意到前面已经证明:x-1≥lnx,因此只需证明:x2-x+2>2sinx.对x分类讨论,利用导数研究函数的单调性极值即可得出.

解答 解:(1)f(x)=xex-alnx-ax,x>0,则$f'(x)=({x+1}){e^x}-a({\frac{1}{x}+1})=({x+1})({{e^x}-\frac{a}{x}})$.
当a≤0时,f'(x)>0,故f(x)单调递增,故不可能存在两个零点,不符合题意;
当a>0时,f'(x)=0有唯一解x=x0,此时${e^{x_0}}{x_0}=a$,则$f{(x)_{min}}=f({x_0})={x_0}{e^{x_0}}-aln{x_0}-a{x_0}$.
注意到${e^{x_0}}{x_0}=a$,因此$f{(x)_{min}}=a-alna{e^{-{x_0}}}-a{x_0}=a-alna<0⇒a∈({e,+∞})$.
(2)①当a<0时,f(x)单调递增,f(x)的值域为R,不符合题意;
当a=0时,则$f({\frac{1}{2}})=\frac{1}{2}{e^{\frac{1}{2}}}<1$,也不符合题意.
当a>0时,由(1)可知,f(x)min=a-alna,故只需a-alna≥1.
令$t=\frac{1}{a}$,上式即转化为lnt≥t-1,
设h(t)=lnt-t+1,则$h'(t)=\frac{1-t}{t}$,因此h(t)在(0,1)上单调递增,
在(1,+∞)上单调递减,从而h(x)max=h(1)=0,所以lnt≤t-1.
因此,lnt=t-1⇒t=1,从而有$\frac{1}{a}=t=1⇒a=1$.
故满足条件的实数为a=1.
②证明:由①可知x2ex-xlnx≥x2+x,因而只需证明:?x>0,恒有x2+x>2lnx+2sinx.
注意到前面已经证明:x-1≥lnx,因此只需证明:x2-x+2>2sinx.
当x>1时,恒有2sinx≤2<x2-x+2,且等号不能同时成立;
当0<x≤1时,设g(x)=x2-x+2-2sinx,则g'(x)=2x-1-2cosx,
当x∈(0,1]时,g'(x)是单调递增函数,且$g'(1)=1-2cos1<1-2cos\frac{π}{3}=0$,
因而x∈(0,1]时恒有g'(x)<0;从而x∈(0,1]时,g(x)单调递减,
从而g(x)≥g(1)=2-2sin1>0,即x2-x+2>2sinx.
故x2ex>(x+2)lnx+2sinx.

点评 本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力、分类讨论方法,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某隧道截面如图,其下部形状是矩形ABCD,上部形状是以CD为直径的半圆.已知隧道的横截面面积为4+π,设半圆的半径OC=x,隧道横截面的周长(即矩形三边长与圆弧长之和)为f(x).
(1)求函数f(x)的解析式,并求其定义域;
(2)问当x等于多少时,f(x)有最小值?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x2-16>0},B={x|-2<x≤6},则A∩B等于(  )
A.(-2,4)B.(4,6]C.(-4,6)D.(-4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数(2+i)i的共轭复数的虚部是(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}是各项均为正整数的等差数列,公差d∈N*,且{an}中任意两项之和也是该数列中的一项.若${a_1}={6^m}$,其中m为给定的正整数,则d的所有可能取值的和为$\frac{1}{2}({{2^{m+1}}-1})({{3^{m+1}}-1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若点P为抛物线$C:{x^2}=\frac{1}{2}y$上的动点,F为抛物线C的焦点,则|PF|的最小值为(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某手机厂商推出一次智能手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100)
频数2040805010
男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100)
频数4575906030
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的方差大小(不计算具体值,给出结论即可);
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取3名用户,求3名用户评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}满足$\sum_{i=1}^{n}$(-1)i+1$\frac{{a}_{i}}{{2}^{i}+1}$=$\frac{1}{{2}^{n}}$,则数列{an}的通项公式an=$\left\{\begin{array}{l}{\frac{3}{2},n=1}\\{(-1)^{n}(\frac{1}{{2}^{n}}+1),n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推.排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推.已知2017年为丁酉年,那么到新中国成立100年时,即2049年为己巳年.

查看答案和解析>>

同步练习册答案