精英家教网 > 高中数学 > 题目详情
已知直线l⊥平面α,直线mÍ平面β,则下列四个命题:
①若α∥β,则l⊥m;  ②若α⊥β,则l∥m;
③若l∥m,则α⊥β;  ④若l⊥m,则α∥β.
其中正确命题的序号是       
①③

试题分析:对于①,若α∥β,因为l⊥平面α,故l⊥平面β,又mÍ平面β,所以l⊥m,①正确;对于②,如下图,设平面,直线,平面,,此时显然满足l⊥平面α,直线mÍ平面β,α⊥β,但不平行,故②错;对于③,若l∥m,因为mÍ平面β,所以l∥β,又l⊥平面α,所以α⊥β,故③正确;对于④,设平面,直线,平面,,此时显然满足l⊥m, l⊥平面α, 直线mÍ平面β,但不平行,故④错;答案, ①③.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,长方体中点.

(1)求证:
(2)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;
(3)若二面角的大小为,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱的侧面是菱形,

(Ⅰ)证明:平面平面
(Ⅱ)设上的点,且平面,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在四棱锥中,底面是矩形,平面分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)若与平面所成角为,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,点分别为的中点.

(1)证明:平面
(2)平面MNC与平面MAC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD﹣A1B1C1D1中,棱长AB=1.

(Ⅰ)求异面直线A1B与 B1C所成角的大小;(Ⅱ)求证:平面A1BD∥平面B1CD1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,分别是线段的中点. 

(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线a、b、l及平面M、N,下列命题中正确的是(  )
A若a∥M,b∥M,则a∥b
B若a∥M,b⊥a,则b⊥M
C若aM,bM,且l⊥a,l⊥b,则l⊥M
D若a⊥M,M∥N,则a⊥N

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是个平面,则下列命题正确的是(   )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

同步练习册答案