精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱中,,点分别为的中点.

(1)证明:平面
(2)平面MNC与平面MAC夹角的余弦值.
(1)证明过程详见解析;(2).

试题分析:本题主要以直三棱柱为几何背景,考查空间两条直线的位置关系、二面角、直线与平面的位置关系等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.第一问,根据线面平行的判定定理,先在面内找到线,从而证明平面;第二问,建立空间直角坐标系,写出所有点坐标,先找到平面和平面的法向量,利用线面垂直的判定可以确定是平面的法向量,而平面的法向量需要计算求出来,最后利用夹角公式求夹角余弦,注意判断夹角是锐角还是钝角,来判断余弦值的正负.
试题解析:(1)连接

由题意知,点分别为的中点,∴
平面平面
平面.
(2)以点为坐标原点,分别以直线轴,轴,轴,建立空间直角坐标系,如图所示,

于是
平面,∴,∵为正方形,∴平面
是平面的一个法向量,,设平面的法向量为
,令

设向量和向量的夹角为,则

∴平面与平面的夹角的余弦值是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.

(1)求证:⊥EF;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直角梯形所在的平面垂直于平面

(Ⅰ)点是直线中点,证明平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,点E是AB的中点.

(1)证明:平面;
(2)证明:;
(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,直线垂直于⊙所在的平面,内接于⊙,且为⊙的直径,点为线段的中点.现有结论:①;②平面;③点到平面的距离等于线段的长.其中正确的是(    )
A.①②B.①②③C.①D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线  (  )
A.相交B.平行C.异面D.共面或异面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线l⊥平面α,直线mÍ平面β,则下列四个命题:
①若α∥β,则l⊥m;  ②若α⊥β,则l∥m;
③若l∥m,则α⊥β;  ④若l⊥m,则α∥β.
其中正确命题的序号是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面,且,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中真命题的个数为(      )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知为平行四边形所在平面外一点,的中点,
求证:平面

查看答案和解析>>

同步练习册答案