精英家教网 > 高中数学 > 题目详情
如图所示,直线垂直于⊙所在的平面,内接于⊙,且为⊙的直径,点为线段的中点.现有结论:①;②平面;③点到平面的距离等于线段的长.其中正确的是(    )
A.①②B.①②③C.①D.②③
B

试题分析:对于结论①,由于是以为直径的圆上一点,所以,因为平面,于是可以得到,结合直线与平面垂直的判定定理可以得到平面,因此,所以结论①正确;对于结论②,由于分别为的中点,由中位线原理可知,利用直线与平面平行的判定定理可以得到平面,所以结论②正确;对于结论③,由结论①知,平面,所以结论③正确,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,ABCD为平行四边形,且BC⊥平面PAB,PA⊥AB,M为PB的中点,PA=AD=2.

(Ⅰ)求证:PD//平面AMC;
(Ⅱ)若AB=1,求二面角B—AC—M的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中点.

(1)求证:
(2)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;
(3)若二面角的大小为,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,已知平面,且

(1)求证:;
(2)在棱BC上取一点E,使得∥平面,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,

(1)求证:
(2)若 ,在棱上确定一点P, 使二面角的平面角的余弦值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱的侧面是菱形,

(Ⅰ)证明:平面平面
(Ⅱ)设上的点,且平面,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,点分别为的中点.

(1)证明:平面
(2)平面MNC与平面MAC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是两条不同的直线,是两个不同的平面,有下列五个命题
 ②
 ④

其中真命题的序号是__________________________(把所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列各图中,为正方体的两个顶点,分别为其所在棱的中点,能得出//平面的图形的序号是                

查看答案和解析>>

同步练习册答案