| A. | A≤B≤C | B. | A≤C≤B | C. | B≤C≤A | D. | C≤B≤A |
分析 由不等式可证$\frac{a+b}{2}$≥$\sqrt{ab}$≥$\frac{ab}{a+b}$,结合指数函数的单调性可得.
解答 解:∵a、b∈R+,∴$\frac{a+b}{2}$≥$\sqrt{ab}$,$\frac{ab}{a+b}$≤$\frac{ab}{2\sqrt{ab}}$=$\frac{\sqrt{ab}}{2}$≤$\sqrt{ab}$,
又f(x)=($\frac{1}{2}$)x为R上的单调递减函数,
∴f($\frac{a+b}{2}$)≤f($\sqrt{ab}$)≤f($\frac{ab}{a+b}$),即A≤B≤C
故选:A
点评 本题考查基本不等式证明式子大小,涉及指数函数的单调性,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | y=2x-2 | B. | y=log2x | C. | y=x2+1 | D. | y=x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60° | B. | 120° | C. | 135° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2×($\frac{2}{3}$)n-1 | B. | 2×($\frac{1}{3}$)n-1 | C. | 2×($\frac{4}{3}$)n-1 | D. | 2×($\frac{4}{3}$)n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com