精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=($\frac{1}{2}$)x,a、b∈R+,A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),C=f($\frac{ab}{a+b}$),则A、B、C的大小关系是(  )
A.A≤B≤CB.A≤C≤BC.B≤C≤AD.C≤B≤A

分析 由不等式可证$\frac{a+b}{2}$≥$\sqrt{ab}$≥$\frac{ab}{a+b}$,结合指数函数的单调性可得.

解答 解:∵a、b∈R+,∴$\frac{a+b}{2}$≥$\sqrt{ab}$,$\frac{ab}{a+b}$≤$\frac{ab}{2\sqrt{ab}}$=$\frac{\sqrt{ab}}{2}$≤$\sqrt{ab}$,
又f(x)=($\frac{1}{2}$)x为R上的单调递减函数,
∴f($\frac{a+b}{2}$)≤f($\sqrt{ab}$)≤f($\frac{ab}{a+b}$),即A≤B≤C
故选:A

点评 本题考查基本不等式证明式子大小,涉及指数函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,二杆各绕点A(a,0)和B(-a,0)旋转,且它们在y轴上的截距的乘积bb1=a2(常数),试求旋转杆交点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于函数y=f(x)图象上任意一点P(x1,y1),存在Q(x2,y2),使得x1x2+y1y2=0,则函数y=f(x)可以为(  )
A.y=2x-2B.y=log2xC.y=x2+1D.y=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图圆O是半径为1的圆,点PO、P1、P2…、P11将圆12等分,则$\overrightarrow{O{P}_{0}}$$•\overrightarrow{O{P}_{i}}$(i=0,1,2,3,…,11)的取值集合是{-1,-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$,0,$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知|$\overrightarrow{a}$|=10,|$\overrightarrow{b}$|=12,且$\overrightarrow{a}$•($\frac{1}{2}$$\overrightarrow{b}$)=-30,则$\overrightarrow{a}$和$\overrightarrow{b}$的夹角为(  )
A.60°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正项等比数列{an}中,a1=2,S3=$\frac{26}{9}$,则数列{an}的通项公式为(  )
A.2×($\frac{2}{3}$)n-1B.2×($\frac{1}{3}$)n-1C.2×($\frac{4}{3}$)n-1D.2×($\frac{4}{3}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(ωx-$\frac{π}{4}$)(ω>0,x∈R)的最小正周期为π.
(Ⅰ)求f($\frac{3π}{4}$);
(Ⅱ)在给定的平面直角坐标系中,画出函数y=f(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{OA}$=(2,-1),$\overrightarrow{OB}$=(3,2),$\overrightarrow{OC}$=(m,2m+1),且点A,B,C不共线.
(1)求实数m的满足的条件;
(2)若△ABC是以角A为直角的三角形,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=sinxcos2φ+cosxsin2φ(x∈R,0<φ<\frac{π}{2}),f(\frac{π}{2})=\frac{1}{2}$.
(1)求f(x)的解析式;
(2)若$f(α+\frac{2π}{3})=-\frac{12}{13},α∈(\frac{π}{2},π)$,求cosα的值.

查看答案和解析>>

同步练习册答案