精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
6
3
,短轴长为2
3

(1)求椭圆C的方程;
(2)设G,H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
分析:(1)由题目给出的椭圆的短轴长及离心率的值,结合a2=b2+c2,可求椭圆的长半轴长,从而椭圆的方程可求;
(2)假设存在满足条件的定圆,设圆的半径为R,根据三角形的面积相等得到OG•OH=R•GH,即
1
OG2
+
1
OH2
=
1
R2
,分OG与OH的斜率都存在和OG与OH的斜率有一个不存在两种情况分析
1
OG2
+
1
OH2
=
1
R2
成立,有一个斜率不存在时由特殊点易证,斜率都存在时设直线OG方程,和椭圆方程联立后求出OG2和OH2,整理后即可得到证明.
解答:解:(1)因为
c
a
=
6
3
,2b=2
3
,a2=b2+c2
解得a=3,b=
3
,所以椭圆方程为
x2
9
+
y2
3
=1
. 
(2)假设存在满足条件的定圆,设圆的半径为R,则OG•OH=R•GH
因为OG2+OH2=GH2,故
1
OG2
+
1
OH2
=
1
R2

当OG与OH的斜率均存在时,不妨设直线OG方程为:y=kx,
y=kx
x2
9
+
y2
3
=1
,得
xG2=
9
1+3k2
yG2=
9k2
1+3k2
,所以OG2=
9+9k2
1+3k2

同理可得OH2=
9k2+9
3+k2
 (将OG2中的K换成-
1
K
可得)
1
OG2
+
1
OH2
=
4
9
=
1
R2
,R=
3
2

当OG与OH的斜率有一个不存在时,可得
1
OG2
+
1
OH2
=
4
9
=
1
R2

故满足条件的定圆方程为:x2+y2=
9
4
点评:本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,考查了数学转化思想方法和分类讨论的思想方法,是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案