【题目】如图,在直角梯形中,,,、分别是、的中点,将三角形沿折起,则下列说法正确的是______________.
(1)不论折至何位置(不在平面内),都有平面;
(2)不论折至何位置,都有;
(3)不论折至何位置(不在平面内),都有;
(4)在折起过程中,一定存在某个位置,使.
科目:高中数学 来源: 题型:
【题目】将数列的前n项和分成两部分,且两部分的项数分别是i,,若两部分的和相等,则称数列的前n项和能够进行等和分割.
若,,试写出数列的前4项和的所有等和分割;
求证:等差数列的前项和能够进行等和分割;
若数列的通项公式为:,且数列的前n项和能进行等和分割,求所有满足条件的n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆()的一个焦点与抛物线的焦点重合,截抛物线的准线所得弦长为1.
(1)求椭圆的方程;
(2)如图所示,,,是椭圆的顶点,是椭圆上除顶点外的任意一点,直线交轴于点,直线交于点,设的斜率为,的斜率为.证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,D为AB的中点.
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已如椭圆C:的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.
(1)求椭圆C的标准方程;
(2)设动直线l交椭圆C于P,Q两点,直线OP,OQ的斜率分别为k,k'.若,求证△OPQ的面积为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某公园有三条观光大道、、围成直角三角形,其中直角边,斜边.
(1)若甲乙都以每分钟100的速度从点出发,甲沿运动,乙沿运动,乙比甲迟2分钟出发,求乙出发后的第1分钟末甲乙之间的距离;
(2)现有甲、乙、丙三位小朋友分别在点、、,设,乙丙之间的距离是甲乙之间距离的2倍,且,请将甲乙之间的距离表示为的函数,并求甲乙之间的最小距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com