分析 (1)依题意有,f′(1)=0,f′(2)=0.求解即可,(2)由f′(1)=0,求出b=-2a-2,结合函数f(x)在x=1时取到极小值,得到-a-1<1,从而求出a的范围.
解答 解:(1)f′(x)=6x2+6ax+3b,
因为函数f(x)在x=1及x=2取得极值,则有f′(1)=0,f′(2)=0.
即$\left\{\begin{array}{l}{6+6a+3b=0}\\{24+12a+3b=0}\end{array}\right.$,解得:a=-3,b=4.
(2)f′(x)=6x2+6ax+3b,
∵函数f(x)在x=1时取到极小值,
∴f′(1)=6+6a+3b=0,
∴b=-2a-2,
∴f′(x)=6x2+6ax-6a-6=6(x-1)(x+a+1),
∴-a-1<1,解得:a>-2.
点评 本题考查了函数的单调性、函数的最值问题.考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{60}{13}$ | B. | $\frac{120}{13}$ | C. | $\frac{50}{13}$ | D. | $\frac{70}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 19 | C. | 10 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com