精英家教网 > 高中数学 > 题目详情
4.二次函数f(x)=x2-2bx+a,且f(x)=f(2-x),且方程f(x)-$\frac{3}{4}$a=0有两个相等实根,求f(x)的解析式.

分析 由f(x)=f(2-x),可得f(x)的图象关于直线x=1对称,求得b=1.根据方程f(x)-$\frac{3}{4}$a=0有两个相等实根,它的判别式△=0,求得a的值,克的函数f(x)的解析式.

解答 解:根据二次函数f(x)=x2-2bx+a,满足f(x)=f(2-x),
可得f(x)的图象关于直线x=1对称,即 b=1,f(x)=x2-2x+a.
方程f(x)-$\frac{3}{4}$a=0有两个相等实根,即 x2-2x+$\frac{a}{4}$=0有两个相等实根,
故有它的判别式△=4-a=0,求得a=4,∴f(x)=x2-2x+4.

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.100件产品中有3件不合格品,每次取1件,有放回地抽取三次,则恰好取得2件不合格品德概率是(  )
A.0.002619B.0.084681C.0.000027D.0.912673

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)不等式$\frac{x-2}{x+2}≤0$的解集为{x|-2<x≤2};
(2)不等式$\frac{x+1}{x+2}<0$的解集为{x|-2<x<-1};
(3)不等式$\frac{2-x}{2+x}<0$的解集为{x|x>2或x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{2}{{x}^{2}-2x+2}$(x∈R)
(1)证明:f(2-x)=f(x);
(2)若f(x)≤1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.当a=$\frac{15}{2}$时,关于x的一元二次方程x2+4x+2a-12=0两根在区间[-3,0]中.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知关于x的方程x2-ax+(a+3)=0有两个根都比-3大,则实数a的取值范围是{a|-3<a≤2,或a≥6}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数yi=$\frac{1}{({x}_{i}+1)({x}_{i}+2)}$,令xi=i,则y1+y2+y3…+y20=(  )
A.$\frac{16}{37}$B.$\frac{15}{41}$C.$\frac{5}{11}$D.$\frac{19}{42}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知三角形的边长分别为3$\sqrt{2}$、6、3$\sqrt{10}$,则它的最大内角的度数是(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

同步练习册答案