精英家教网 > 高中数学 > 题目详情
16.设f(x)是奇函数,且在(0,+∞)内是增加的,又f(-3)=0,则x•f(x)<0的解集是(  )
A.{x|-3<x<0,或x>3}B.{x|x<-3,或0<x<3}C.{x|-3<x<0,或0<x<3}D.{x|x<-3,或x>3}

分析 由x•f(x)<0对x>0或x<0进行讨论,把不等式x•f(x)<0转化为f(x)>0或f(x)<0的问题解决,根据f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,把函数值不等式转化为自变量不等式,求得结果.

解答 解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,
∴在(-∞,0)内f(x)也是增函数,
又∵f(-3)=0,
∴f(3)=0
∴当x∈(-∞,-3)∪(0,3)时,f(x)<0;当x∈(-3,0)∪(3,+∞)时,f(x)>0;
∴x•f(x)<0的解集是(-3,0)∪(0,3)
故选C.

点评 考查函数的奇偶性和单调性解不等式,体现了分类讨论的思想方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=4x2-kx-8在(-∞,8]上是单调函数,则k的取值范围是[64,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知半球的半径为2,则其内接圆柱的侧面积最大值是(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知PA垂直于矩形ABCD所在平面,M,N分别是AB,PC的中点.
(1)MN∥平面PAD;
(2)求证:MN⊥CD;
(3)若平面PDC与平面ABCD成45°角,求证:MN⊥面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆O:x2+y2=25和圆C:x2+y2-4x-2y-20=0相交于A、B两点,求公共弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义域为R的函数f(x)=$\frac{1-2^x}{a+2^{x+1}}$是奇函数,
(1)求a的值;
(2)试判断f(x)在(-∞,+∞)的单调性,并请你用函数单调性的定义给予证明;
(3)若对任意的t∈R,不等式f(mt2+1)+f(1-mt)<0恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列命题:
①函数f(x)=4cos(2x+$\frac{π}{3}$)的一个对称中心为(-$\frac{5π}{12}$,0);
②若α,β为第一象限角,且α>β,则tanα>tanβ;
③若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则存在实数λ,使得$\overrightarrow{b}$=λ$\overrightarrow{a}$;
④在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=40,b=20,B=25°,则△ABC必有两解.
⑤函数y=sin2x的图象向左平移$\frac{π}{4}$个单位长度,得到y=sin(2x+$\frac{π}{4}$)的图象.
其中正确命题的序号是①③④ (把你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=|lgx|,若方程f(x)=k有两个不等的实根α,β,则$\frac{1}{α}+\frac{1}{β}$的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

同步练习册答案