精英家教网 > 高中数学 > 题目详情
(2012•自贡一模)已知函数f(x)的定义域为[0,1],且同时满足:①对于任意x∈[0,1],总有f(x)≥3;②f(1)=4;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函数f(x)的最大值;
(III)设数列{an}的前n项和为Sn,满足a1=1,Sn=-
1
2
(an-3),n∈N*
,求证:f(a1)+f(a2)+…+f(an)<
3
2
log3
27
a
2
n
分析:(Ⅰ)直接取x1=0,x2=0利用f(x1+x2)≥f(x1)+f(x2)-3可得:f(0)≤3,再结合已知条件f(0)≥3即可求得f(0)=3;
(Ⅱ)由0≤x1<x2≤1,则0<x2-x1<1,故有f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-3>f(x1),即f(x)在[0,1]内是增函数,故函数f(x)的最大值为f(1);
(Ⅲ)先证明数列{an}是以a1=1为首项,公比为
1
3
的等比数列,进而可得f(1)=f[3n-1
1
3n-1
]=f[
1
3n-1
+(3n-1-1)×
1
3n-1
]≥f(
1
3n-1
)+f[(3n-1-1)×
1
3n-1
]-3≥…,即 4≥3n-1f(
1
3n-1
)-3n+3,即f(an)≤3+
1
3n-1
,从而可证不等式.
解答:(Ⅰ) 解:令x1=x2=0,则有f(0)≥2f(0)-3,即f(0)≤3
又对于任意x∈[0,1],总有f(x)≥3,
∴f(0)=3 (3分)
(Ⅱ)解:任取x1,x2∈[0,1],x1<x2
f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-3
∵0≤x1<x2≤1,则0<x2-x1<1,
∴f(x2-x1)≥3
∴f(x2)≥f(x1)+3-3=f(x1),即f(x)在[0,1]上递增.
∴当x∈[0,1]时,f(x)≤f(1)=4
∴f(x)的最大值为4   (6分)
(Ⅲ)证明:当n>1时,an=Sn-Sn-1=-
1
2
(an-3)-
1
2
(an-1-3),
an
an-1
=
1
3

∴数列{an}是以a1=1为首项,公比为
1
3
的等比数列.
∴an=
1
3n-1
(8分)
  f(1)=f[3n-1
1
3n-1
]=f[
1
3n-1
+(3n-1-1)×
1
3n-1
]≥f(
1
3n-1
)+f[(3n-1-1)×
1
3n-1
]-3≥…
  即 4≥3n-1f(
1
3n-1
)-3n+3.(10分)
∴f(
1
3n-1
)≤
3n+1
3n-1
=3+
1
3n-1
,即f(an)≤3+
1
3n-1

∴f(a1)+f(a2)+…+f(an)≤(3+
1
31-1
)+(3+
1
32-1
)+…+(3+
1
3n-1

=3n+
1×[1-(
1
3
)
n
]
1-
1
3
=3n+
3
2
-
1
3n-1
<3n+
3
2
=3(n+
1
2
).
 又
3
2
log3
27
a
n
2
=
3
2
log333•32n-2=
3
2
(2n+1)=3(n+
1
2
),
∴原不等式成立.(14分)
点评:本题主要是在新定义下对抽象函数进行考查,在做关于新定义的题目时,一定要先研究定义,在理解定义的基础上再做题.解题时要认真审题,合理运用条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•自贡一模)已知
a
+
b
+
c
=
0
,且
a
c
的夹角为60°,|
b
|=
3
|
a
|,则cos<
a
b
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡一模)已知函数f(x)=
2x     ,x≥0
x(x+1),x<0
,则f(-2)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡一模)f(x)是以4为周期的奇函数,f(
1
2
)=1
sinα=
1
4
,则f(4cos2α)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡一模)要研究可导函数f(x)=(1+x)n(n∈N*)在某点x0处的瞬时变化率,有两种方案可供选择:①直接求导,得到f′(x),再把横坐标x0代入导函数f′(x)的表达式;②先把f(x)=(1+x)n按二项式展开,逐个求导,再把横坐标x0代入导函数f′(x)的表达式.综合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
n•2n-1
n•2n-1
 n∈N*

查看答案和解析>>

同步练习册答案