精英家教网 > 高中数学 > 题目详情

若(x2-)n的展开式中含x的项为第6项,设(1-3x)n=a0+a1x+a2x2+…+anxn,则a1+a2+…+an的值为________.

 

255

【解析】本题主要考查二项式定理、特殊赋值法等知识,考查方程思想.

二项式(x2-)n展开式的第6项是T5+1= (-1)5x2n-15,令2n-15=1得n=8.在二项式(1-3x)8的展开式中,令x=0得a0=1,令x=1得a0+a1+…+a8=28=256,所以a1+a2+…+a8=255.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-8n次独立重复实验与二项分布(解析版) 题型:选择题

在高三的一个班中,有的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生数ξ~B(5,),则P(ξ=k)取最大值的k值为(  )

A.0 B.1 C.2 D.3

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-4随机事件的概率(解析版) 题型:解答题

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.

(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;

(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

 

①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-4随机事件的概率(解析版) 题型:选择题

5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为偶数的概率为(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-3二项式定理(解析版) 题型:填空题

(2x+)n的展开式中各项系数之和为729,则该展开式中x2的系数为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-3二项式定理(解析版) 题型:选择题

(2-)8展开式中不含x4项的系数的和为(  )

A.-1 B.0 C.1 D.2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-1分类加法与分步乘法计数原理(解析版) 题型:解答题

某区有7条南北向街道,5条东西向街道(如图).

(1)图中共有多少个矩形?

(2)从A点走向B点最短的走法有多少种?

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮考前特训:创新问题专项训练1(解析版) 题型:解答题

设数列{an}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得=an·an+2k成立,则称数列{an}为“Jk型”数列.

(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n;

(2)若数列{an}既是“J3型”数列,又是“J4型”数列,证明:数列{an}是等比数列.

 

查看答案和解析>>

同步练习册答案