6£®ÇóͨÏʽ£º
£¨1£©ÔÚÊýÁÐ{an}ÖУ¬Èôa1=2£¬an+1=an+ln£¨1+$\frac{1}{n}$£©£¬Ôòan=2+lnn£»
£¨2£©ÔÚÊýÁÐ{an}ÖУ¬Èôa1=5£¬an+1=2an+2n+1-1£¬Ôòan=£¨n+1£©•2n+1£»
£¨3£©Èôan=2an+4n+2£¬ÇóÊýÁеÄͨÏʽ£»
£¨4£©a1=1£¬£¨n+1£©a${\;}_{n+1}^{2}$-na${\;}_{n}^{2}$+an+1an=0£¨n¡ÊN*ÇÒan£¾0£©£¬ÇóÊýÁеÄͨÏîan£»
£¨5£©a1=1£¬nan=a1+2a2+3a3+¡­+£¨n-1£©an-1£¨n¡Ý2£¬n¡ÊN*£©£¬ÇóÊýÁеÄͨÏîan£»
£¨6£©a1=1£¬an+1=$\frac{{a}_{n}}{-7{a}_{n}-6}$£¬ÇóÊýÁеÄͨÏîan£»
£¨7£©a1=1£¬Èôan+1=a${\;}_{n}^{2}$+2an£¬ÇóÊýÁеÄͨÏîan£®

·ÖÎö £¨1£©¸ù¾ÝÒÑÖª¿ÉµÃan-an-1=lnn-ln£¨n-1£©£¬µü¼Ó¿ÉµÃÊýÁеÄͨÏʽ£®
£¨2£©ÓÉÒÑÖªµÃan+1-1=2£¨an-1£©+2n+1£¬´Ó¶ø{$\frac{{a}_{n}-1}{{2}^{n}}$}ÊÇÊ×ÏîΪ2£¬¹«²îΪ1µÄµÈ²îÊýÁУ¬ÓÉ´ËÄÜÇó³öan£®
¹Ê´ð°¸Îª£º£¨n+1£©•2n+1£®
£¨3£©°Ñan=2an+4n+2£¬±äÐÎÄÜÇó³öan£®
£¨4£©ÓÉÒÑÖªÍÆµ¼³ö£¨n+1£©an+1=nan£¬´Ó¶ø$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$£¬ÓÉ´ËÀûÓÃÀ۳˷¨ÄÜÇó³öÕâ¸öÊýÁеÄͨÏʽ£®
£¨5£©ÓÉnan=a1+2a2+¡­+£¨n-1£©an-1£¨n¡Ý2£©£¬µÃ£¨n-1£©an-1=a1+2a2+3a3+¡­+£¨n-2£©an-2£¨n¡Ý3£©£®Á½Ê½Ïà¼õ£¬µÃµ½$\frac{{a}_{n}}{{a}_{n-1}}$=2¡Á$\frac{n-1}{n}$£¨n¡Ý3£©£®ÓÉ´ËÀûÓÃÀ۳˷¨ÄÜÇó³öÕâ¸öÊýÁеÄͨÏʽ£®
£¨6£©ÓÉÒÑÖªµÃ$\frac{1}{{a}_{n+1}}$+1=-6£¨$\frac{1}{{a}_{n}}$+1£©£¬$\frac{1}{{a}_{1}}+1$=2£¬´Ó¶ø{$\frac{1}{{a}_{n}}+1$}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ-6µÄµÈ±ÈÊýÁУ¬ÓÉ´ËÄÜÇó³öÕâ¸öÊýÁеÄͨÏʽ£®
£¨7£©ÓÉÒÑÖª${a}_{n+1}+1=£¨{a}_{n}+1£©^{2}$£¬Éèbn=an+1£¬Ôò${b}_{n+1}={{b}_{n}}^{2}$£¬ÓÉ´ËÄÜÇó³öÕâ¸öÊýÁеÄͨÏʽ£®

½â´ð ½â£º£¨1£©¡ßan+1=an+ln£¨1+$\frac{1}{n}$£©£¬
¡àan+1-an=ln£¨n+1£©-lnn£¬
¡àan-an-1=lnn-ln£¨n-1£©£¬
an-1-an-2=ln£¨n-1£©-ln£¨n-2£©£¬
¡­
a3-a2=ln3-ln2£¬
a2-a1=ln2-ln0£¬
µü¼ÓµÃ£ºan-a1=lnn£¬
¼´an=a1+lnn=2+lnn£¬
¹Ê´ð°¸Îª£º2+lnn£®
£¨2£©¡ßa1=5£¬an+1=2an+2n+1-1£¬
¡àan+1-1=2£¨an-1£©+2n+1£¬
¡à$\frac{{a}_{n+1}-1}{{2}^{n+1}}$-$\frac{{a}_{n}-1}{{2}^{n}}$=1£¬$\frac{{a}_{1}-1}{2}$=2£¬
¡à{$\frac{{a}_{n}-1}{{2}^{n}}$}ÊÇÊ×ÏîΪ2£¬¹«²îΪ1µÄµÈ²îÊýÁУ¬
¡à$\frac{{a}_{n}-1}{{2}^{n}}$=2+£¨n-1£©¡Á1=n+1£¬
¡àan=£¨n+1£©•2n+1£®
¹Ê´ð°¸Îª£º£¨n+1£©•2n+1£®
£¨3£©¡ßan=2an+4n+2£¬
¡àan=-4n-2£®
£¨4£©a1=1£¬£¨n+1£©a${\;}_{n+1}^{2}$-na${\;}_{n}^{2}$+an+1an=0£¨n¡ÊN*ÇÒan£¾0£©£»
¡ß£¨n+1£©an+12-nan2+an+1an=0£¬
¡à£¨n+1£©an+1=nan»òan+1+an=0£¬
¡ß{an}ÊÇÊ×ÏîΪ1µÄÕýÊýÏîÊýÁУ¬
¡à£¨n+1£©an+1=nan£¬
¡àan+1=$\frac{n}{n+1}$an£¬
¼´$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$£¬
¡à$\frac{{a}_{2}}{{a}_{1}}$¡Á$\frac{{a}_{3}}{{a}_{2}}$¡Á¡­¡Á$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{{a}_{n}}{1}$=an=$\frac{1}{2}¡Á\frac{2}{3}$¡Á¡­¡Á$\frac{n-1}{n}$=$\frac{1}{n}$£¨n¡ÊN*£©
¹ÊÕâ¸öÊýÁеÄͨÏʽΪan=$\frac{1}{n}$£¨n¡ÊN*£©£®
£¨5£©¡ßnan=a1+2a2+¡­+£¨n-1£©an-1£¨n¡Ý2£©£¬
¡à£¨n-1£©an-1=a1+2a2+3a3+¡­+£¨n-2£©an-2£¨n¡Ý3£©£®
Á½Ê½Á½±ß·Ö±ðÏà¼õ£¬
µÃnan-£¨n-1£©an-1=£¨n-1£©an-1£¨n¡Ý3£©£¬
¼´nan=2£¨n-1£©an-1£¬
¡à$\frac{{a}_{n}}{{a}_{n-1}}$=2¡Á$\frac{n-1}{n}$£¨n¡Ý3£©£®
ÓÖa2=$\frac{1}{2}$£¬¹Êan=a1¡Á$\frac{{a}_{2}}{{a}_{1}}$¡Á$\frac{{a}_{3}}{{a}_{2}}$¡Á¡­¡Á$\frac{{a}_{n}}{{a}_{n-1}}$=2n-1¡Á$\frac{1}{2}$¡Á$\frac{2}{3}$¡Á¡­¡Á$\frac{n-1}{n}$=$\frac{{2}^{n-1}}{n}$£®
£¨6£©¡ßa1=1£¬an+1=$\frac{{a}_{n}}{-7{a}_{n}-6}$£¬
¡à$\frac{1}{{a}_{n+1}}$+1=-6£¨$\frac{1}{{a}_{n}}$+1£©£¬$\frac{1}{{a}_{1}}+1$=2£¬
¡à{$\frac{1}{{a}_{n}}+1$}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ-6µÄµÈ±ÈÊýÁУ¬
¡à$\frac{1}{{a}_{n}}+1$=2¡Á£¨-6£©n-1£¬
¡àan=$\frac{1}{2¡Á£¨-6£©^{n-1}-1}$£®
£¨7£©¡ßa1=1£¬an+1=a${\;}_{n}^{2}$+2an£¬
¡à${a}_{n+1}+1=£¨{a}_{n}+1£©^{2}$£¬
Éèbn=an+1£¬¡à${b}_{n+1}={{b}_{n}}^{2}$£¬
¡ßb1=a1+1=2£¬
${b}_{2}={2}^{2}$£¬${b}_{3}={2}^{4}$£¬${b}_{4}={2}^{8}$£¬¡­
¡àbn=${2}^{{2}^{n-1}}$£¬
¡à${a}_{n}={2}^{{2}^{n-1}}$-1£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÊýÁÐͨÏʽµÄÇ󷨣¬ÊìÁ·ÕÆÎÕµü¼Ó·¨ÇóÊýÁÐͨÏʽµÄÊÊÓ÷¶Î§ºÍ²½Ö裬Êǽâ´ðµÄ¹Ø¼ü£®±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽÓëǰnÏîºÍ¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÖ±ÏßlµÄÇãб½ÇΪ135¡ã£¬Ö±Ïßl1¾­¹ýµãA£¨3£¬2£©ºÍB£¨a£¬-1£©£¬ÇÒÖ±Ïßl1ÓëÖ±Ïßl´¹Ö±£¬Ö±Ïßl2µÄ·½³ÌΪ2x+by+1=0£¬ÇÒÖ±Ïßl2ÓëÖ±Ïßl1ƽÐУ¬Ôòa+bµÈÓÚ£¨¡¡¡¡£©
A£®-4B£®-2C£®0D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÊýÁÐ{an}Âú×ã$\frac{1}{lg£¨1-\sqrt{{a}_{1}}£©}$+$\frac{2}{lg£¨1-\sqrt{{a}_{2}}£©}$+¡­+$\frac{n}{lg£¨1-\sqrt{{a}_{n}}£©}$=-$\frac{n}{lg2}$£¨n¡Ý1£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¶ÔÓÚÈÎÒâʵÊýxºÍÕýÕûÊýn£¬
£¨¢ñ£©Ö¤Ã÷£º$\frac{{a}_{n}}{n}$¡Ýx£¨$\frac{1}{{2}^{0}}$-x£©+x£¨$\frac{1}{2}$-x£©+x£¨$\frac{1}{{2}^{2}}$-x£©+¡­+x£¨$\frac{1}{{2}^{n-1}}$-x£©£»
£¨¢ò£©Ö¤Ã÷£º$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{2}$+¡­+$\frac{{a}_{n}}{n}$£¾$\frac{2£¨n-1£©^{2}}{n£¨n+1£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Å×ÎïÏßy2=4x£¬Ö±Ïßl¹ý½¹µãF£¬ÓëÆä½»ÓÚA£¬BÁ½µã£¬ÇÒ$\overrightarrow{BA}=4\overrightarrow{BF}$£¬Ôò¡÷AOB£¨OÎª×ø±êÔ­µã£©Ãæ»ýΪ$\frac{4\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑ֪ijԲ׶ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ2=$\frac{225}{9+16co{s}^{2}¦È}$£¬ÔòÇúÏßCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{4}{5}$B£®$\frac{3}{5}$C£®$\frac{5}{3}$D£®$\frac{5}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-4x+3£¬x¡Ü0}\\{-{x}^{2}-2x+3£¬x£¾0}\end{array}\right.$£¬µ±x¡Ê[-2£¬2]ʱ²»µÈʽf£¨x+a£©¡Ýf£¨2a-x£©ºã³ÉÁ¢£¬ÔòʵÊýaµÄ×îСֵÊÇ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Éèp£º¡°Èôx=a£¬Ôòx2=4¡±£¬q£º¡°Èôx£¾a£¬Ôò2x£¾1¡±£®
£¨1£©ÈôpÎªÕæ£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©ÈôpÇÒqÎªÕæ£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=xsinx£¬Ôòf¡ä£¨¦Ð£©=-¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏABC=90¡ã£¬AB=3£¬BC=4£¬µãOΪBCµÄÖе㣬ÒÔBCΪֱ¾¶µÄ°ëÔ²ÓëAC£¬AO·Ö±ðÏཻÓÚµãM£¬N£¬ÔòAN=$\sqrt{13}-2$£»$\frac{AM}{MC}$=$\frac{9}{16}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸