精英家教网 > 高中数学 > 题目详情
1.已知某圆锥曲线C的极坐标方程是ρ2=$\frac{225}{9+16co{s}^{2}θ}$,则曲线C的离心率为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{5}{3}$D.$\frac{5}{4}$

分析 利用ρ2=x2+y2,ρcosθ=x,极坐标方程化为直角坐标方程,由此能求出曲线C的离心率.

解答 解:∵圆锥曲线C的极坐标方程是ρ2=$\frac{225}{9+16co{s}^{2}θ}$,
∴9ρ2+16ρ2cos2θ=225,
∴9x2+9y2+16x2=225,
∴$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{25}$=1,
∴a=5,b=3,c=4,
∴曲线C的离心率e=$\frac{c}{a}$=$\frac{4}{5}$.
故选:A.

点评 本题考查曲线的离心率的求法,是基础题,解题时要认真审题,注意极坐标和直角坐标互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.给出下列命题:①直线$x+\sqrt{3}y-1=0$的倾斜角是$\frac{2π}{3}$;②已知过抛物线C:y2=2px(p>0)的焦点F的直线与抛物线C交于A(x1,y1),B(x2,y2)两点,则有${x_1}{x_2}=\frac{p^2}{4},{y_1}{y_2}=-{p^2}$;③已知F1、F2为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左、右焦点,点P为双曲线右支上异于顶点的任意一点,则△PF1F2的内心I始终在一条直线上.
其中所有正确命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是{x|x<-3或0<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2cos2$\frac{x}{2}$-$\sqrt{3}$sinx.
(1)求函数f(x)的最小正周期和值域;
(2)设α∈(-π,0),且f(α-$\frac{π}{6}$)=$\frac{13}{5}$,求sin(2α+$\frac{π}{12}$)值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.
(1)证明:平面A1BD∥平面CD1B1
(2)求三棱柱ABD-A1B1D1的体积;
(3)求直线D1C与面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求通项公式:
(1)在数列{an}中,若a1=2,an+1=an+ln(1+$\frac{1}{n}$),则an=2+lnn;
(2)在数列{an}中,若a1=5,an+1=2an+2n+1-1,则an=(n+1)•2n+1;
(3)若an=2an+4n+2,求数列的通项公式;
(4)a1=1,(n+1)a${\;}_{n+1}^{2}$-na${\;}_{n}^{2}$+an+1an=0(n∈N*且an>0),求数列的通项an
(5)a1=1,nan=a1+2a2+3a3+…+(n-1)an-1(n≥2,n∈N*),求数列的通项an
(6)a1=1,an+1=$\frac{{a}_{n}}{-7{a}_{n}-6}$,求数列的通项an
(7)a1=1,若an+1=a${\;}_{n}^{2}$+2an,求数列的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={lna},B={x∈Z|x2<2x},若A∪B=A,则a=(  )
A.1B.eC.e2D.$\sqrt{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:4x2+12x-7≤0,q:a-3≤x≤a+3.
(1)当a=0时,若p真q假,求实数x的取值范围;
(2)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x,y满足约束条件$\left\{\begin{array}{l}y-x≤1\\ x+y≤3\\ y≥m\end{array}\right.$,若z=x+3y的最大值与最小值的差为7,则实数m=(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

同步练习册答案