精英家教网 > 高中数学 > 题目详情
如图,已知平面是正三角形,AD=DEAB,且F是CD的中点.

⑴求证:AF//平面BCE;
⑵求证:平面BCE⊥平面CDE.
(1)详见解析;⑵详见解析.

试题分析:(1)要证AF//平面BCE就需要在平面BCE内找一条直线与AF平行.
取CE中点P,易证ABPF为平行四边形,从而问题得证.
⑵证面面垂直,首先考虑评点哪条线垂直哪个面.
很容易得,AF⊥CD,故考虑证明AF⊥平面CDE.那么需要在平面CDE内再找一条直线与AF垂直.找哪一条呢? ∵DE⊥平面ACD, AF平面ACD,∴DE⊥AF,这样便可使问题得证.
试题解析:(1)取CE中点P,连结FP、BP。
∵F为CD的中点,∴FP//DE,且FP=    2分
又AB//DE,且AB=∴AB//FP,且AB=FP,
∴ABPF为平行四边形,∴AF//BP.
又∵AF平面BCE,BP平面BCE,∴AF//平面BCE.           6分
⑵∵△ACD为正三角形,∴AF⊥CD.
∵DE⊥平面ACD, AF平面ACD,
∴DE⊥AF
又AF⊥CD,CD∩DE=D,
∴AF⊥平面CDE.                          8分
又BP//AF,∴BP⊥平面CDE。                    10分
又∵BP平面BCE,
∴平面BCE⊥平面CDE.                12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。

(Ⅰ)求证:平面FGH⊥平面AEB;
(Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求与底面所成角的大小;
(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥面,为线段上的点.

(Ⅰ)证明:⊥面 ;
(Ⅱ)若的中点,求所成的角的正切值;
(Ⅲ)若满足⊥面,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上任一点.

(Ⅰ)求证:无论E点取在何处恒有
(Ⅱ)设,当平面EDC平面SBC时,求的值;
(Ⅲ)在(Ⅱ)的条件下求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直棱柱中,分别是的中点,.

⑴证明:;
⑵求EC与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不同的平面,则下列命题中的真命题是(   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不同的平面,则下列命题正确的是(  )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面,且,给出下列命题: 
①若,则m⊥;      ②若,则m∥
③若m⊥,则;      ④若m∥,则.其中正确命题的个数是(   )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案