精英家教网 > 高中数学 > 题目详情
已知x2+y2=2,且|x|≠|y|,求
1
(x+y)2
+
1
(x-y)2
的最小值.
考点:平均值不等式
专题:不等式的解法及应用
分析:由题意可得(x+y)2+(x-y)2=4,再根据((x+y)2+(x-y)2)(
1
(x+y)2
+
1
(x-y)2
)
≥4,求得
1
(x+y)2
+
1
(x-y)2
的最小值.
解答: 解:∵x2+y2=2,∴(x+y)2+(x-y)2=4.
((x+y)2+(x-y)2)(
1
(x+y)2
+
1
(x-y)2
)≥4
,∴
1
(x+y)2
+
1
(x-y)2
≥1

当且仅当x=±
2
,y=0
,或x=0,y=±
2
时,
1
(x+y)2
+
1
(x-y)2
取得最小值是1.
点评:本题主要考查绝对值不等式的应用,式子的变形是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2014型增函数”,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(n)=(
1+i
1-i
)
n-1
+(
1-i
1+i
)
n+1
(n∈Z),则f(2014)(  )
A、2B、-2C、2iD、-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二项式(
5x
+
1
2x
)m
的展开式中第2项为常数项t,其中m∈N*,且展开式按x的降幂排列.
(Ⅰ)求m及t的值.
(Ⅱ)数列{an}中,a1=t,an=tan-1-,n∈N*,求证:an-3能被4整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数fn(x)=
x2-2x-a
enx
,其中n∈N*,a∈R,e是自然对数的底数.
(1)求函数g(x)=f1(x)-f2(x)的零点;
(2)若对任意n∈N*,fn(x)均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知k,m∈N*,k<m,且函数fk(x)在R上是单调函数,探究函数fm(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥(底面是正三角形,从顶点向底面作垂线,垂足是底面中心得三棱锥)
P-ABC的侧棱长为10cm,侧面积为144cm2,求棱锥的底面边长和高.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+alnx(a≠0,a∈R).
(Ⅰ)若a=1,求函数f(x)在x=1处的切线方程;
(Ⅱ)若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx+a
x
(a∈R).
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)当a=1,且x≥1时,证明:f(x)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
a-2i
1+2i
(i是虚数单位)是纯虚数,则实数a的值为
 

查看答案和解析>>

同步练习册答案