精英家教网 > 高中数学 > 题目详情
已知函数y=ax3+bx2,当x=1时,有极大值3;则2a+b=
 
分析:由已知得到y′|x=1=3a+2b=0,且y|x=1=a+b=3,从中解出a,b即可.
解答:解:因为函数y=ax3+bx2,所以y′=3ax2+2bx,又当x=1时,y′|x=1=3a+2b=0,且y|x=1=a+b=3,
3a+2b=0
a+b=3
,a=-6,b=9,
∴2a+b=-3.(也可上两式直接相减得到答案)
故答案为-3.
点评:本题考查利用导熟研究函数的极值.可导函数的极值点一定是导数为0的根,但导数为0的点不一定是极值点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=ax3+bx2,当x=1时,有极大值3.
(1)求a,b的值;
(2)求函数y的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax3+bx2+6x+1的递增区间为(-2,3),则a,b的值分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax3-15x2+36x-24在x=3处有极值,则函数的递减区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax3+bx2,当x=1时,有极大值3
(1)求函数的解析式
(2)写出它的单调区间
(3)求此函数在[-2,2]上的最大值和最小值.

查看答案和解析>>

同步练习册答案