精英家教网 > 高中数学 > 题目详情
已知a、b、c、d∈R+,且满足下列两个条件:
①a、b分别为回归直线方程y=bx+a的常数项和一次项系数,其中x与y之间有如下对应数据:
x 3 4 5 6
y 2.5 3 4 4.5
1
c
+
1
d
=
1
20
;则ac+bd的最小值是
21+14
2
21+14
2
分析:利用线性回归方程计算公式即可得出a,b,再利用基本不等式即可得出.
解答:解:由①可得:
.
x
=
3+4+5+6
4
=4.5,
.
y
=
2.5+3+4+4.5
4
=3.5.
∴b=
3×2.5+4×3+5×4+6×4.5-4×4.5×3.5
32+42+52+62-4×4.52
=
7
10

∴a=
.
y
-b
.
x
=3.5-0.7×4.5=0.35=
7
20

∵c>0,d>0.
∴ac+bd=
7
20
c+
7
10
d
=
7
20
(c+2d)×20(
1
c
+
1
d
)
=7(3+
2d
c
+
c
d
)
≥7(3+2
2d
c
c
d
)
=21+14
2
,当且仅当c=
2
d
=20(1+
2
)
时取等号.
故答案为21+14
2
点评:本题考查了线性回归方程、基本不等式的性质等基础知识与基本方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、给出如下四个命题:
①对于任意一条直线a,平面α内必有无数条直线与a垂直;
②若α、β是两个不重合的平面,l、m是两条不重合的直线,则α∥β的一个充分而不必要条件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四条不重合的直线,如果a⊥c,a⊥d,b⊥c,b⊥d,则“a∥b”与“c∥d”不可能都不成立;
④已知命题P:若四点不共面,那么这四点中任何三点都不共线.
则命题P的逆否命题是假命题上命题中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d都是正数,S=
a
a+b+d
+
b
b+c+a
+
c
c+d+a
+
d
d+a+c
,则S的取值范围是
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b,c>d,且a,b,c,d均不为0,那么下列不等式成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C、D四点不共面,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=G,BC∩α=H,则四边形EFGH是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d是实数,用分析法证明:
a2+b2
+
c2+d2
(a+c)2+(b+d)2

查看答案和解析>>

同步练习册答案